
NOID(1) Batch Identifier Infrastructure NOID(1)

NAME
noid − nice opaque identifier generator commands

SYNOPSIS
noid [−f Dbdir] [−vh] Command Arguments

DESCRIPTION
The noid utility creates minters (identifier generators) and accepts commands that operate
them. Once created, a minter can be used to produce persistent, globally unique names
for documents, databases, images, vocabulary terms, etc. Properly managed, these identi-
fiers can be used as long term durable information object references within naming
schemes such as ARK, PURL, URN, DOI, and LSID. At the same time, alternative minters
can be set up to produce short-lived names for transaction identifiers, compact web server
session keys, and other ephemera.

In general, a noid minter efficiently generates, tracks, and binds unique identifiers, which
are produced without replacement in random or sequential order, and with or without a
check character that can be used for detecting transcription errors. A minter can bind
identifiers to arbitrary element names and element values that are either stored or pro-
duced upon retrieval from rule-based transformations of requested identifiers; the latter
has application in identifier resolution. Noid minters are very fast, scalable, easy to create
and tear down, and have a relatively small footprint. They use BerkeleyDB as the under-
lying database.

An identifier generated by a noid minter is also known generically as a ‘‘noid’’ (nice
opaque identifier — rhymes with void). While a minter can record and bind any identi-
fiers that you bring to its attention, often it is used to generate, bringing to your attention,
identifier strings that carry no widely recognizable meaning. This semantic opaqueness
reduces their vulnerability to era− and language-specific change, and helps persistence by
making for identifiers that can age and travel well.

The form, number, and intended longevity of a minter’s identifiers are given by a Tem-
plate and a Term supplied when the generator database is created. A supplied Term of
‘‘long’’ establishes extra restrictions and logging appropriate for the support of persistent
identifiers. Across successive minting operations, the generator ‘‘uses up’’ its namespace
(the pool of identifiers it is capable of minting) such that no identifier will ever be gener-
ated twice unless the supplied Term is ‘‘short’’ and the namespace is finite and com-
pletely exhausted. The default Term is ‘‘medium’’.

The noid utility parameters — flags, Dbdir (database location), Command, Arguments
— are described later under COMMANDS AND MODES. There are also sections cover-
ing TEMPLATES, RULE−BASED MAPPING, URL INTERFACE, and NAME RESOLU-
TION.

TUTORIAL INTRODUCTION
Once the noid utility is installed, the command,

noid dbcreate s.zd

will create a minter for an unlimited number of identifiers. It produces a generator for
medium term identifiers (the default) with the Template, s.zd, governing the order,

CDL 0.423 2004-11-21 1

NOID(1) Batch Identifier Infrastructure NOID(1)

number, and form of minted identifier strings. These identifiers will begin with the con-
stant part s and end in a digit (the final d), all within an unbounded sequential (z) names-
pace. The TEMPLATES section gives a full explanation. This generator will mint the
identifiers, in order,

s0, s1, s2, ..., s9, s10, ..., s99, s100, ...

and never run out. To mint the first ten identifiers,

noid mint 10

When you’re done, on a UNIX platform you can remove that minter with

rm -fr NOID

Now let’s create a more complex minter.

noid dbcreate f5.reedeedk long 13030 cdlib.org oac/cmp

This produces a generator for long term identifiers that begin with the constant part
13030/f5. Exactly 70,728,100 identifiers will be minted before running out.

The 13030 parameter is the registered Name Assigning Authority Number (NAAN) for
the assigning authority known as ‘‘cdlib.org’’, and ‘‘oac/cmp’’ is a string chosen by the
person setting up this minter to identify the project that will be operating it. This particu-
lar minter generates identifiers that start with the prefix f5 in the 13030 namespace. If
long term information retention is within the mission of your organization (this includes
national and university libraries and archives), you may register for a globally unique
NAAN by sending email to ark at cdlib dot org.

Identifiers will emerge in ‘‘quasi−random’’ order, each consisting of six characters
matching up one-for-one with the letters eedeed.

noid mint 1

The first identifier should be 13030/f54x54g11, with the namespace ranging from a
low of 13030/f5000000s to a high of 13030/f5zz9zz94. You can create a
‘‘locations’’ element under a noid and bind three URLs to it with the command,

noid bind set 13030/f54x54g11 locations \
’http://a.b.org/foohttp://c.d.org/barhttp://e.f.org/zaf’

The template’s final k causes a computed check character to be added to the end of every
generated identifier. It also accounts for why the lowest and highest noids look a little
odd on the end. The final check character allows detection of the most common tran-
scription errors, namely, incorrect entry of one character and the transposition of two
characters. The next command takes three identifiers that someone might ask you about
and determines that, despite appearances, only the first is in the namespace of this minter.

noid validate - 13030/f54x54g11 13030/f54y54g11 \
13030/f54x45g11

To make way for creation of another minter, you can move the entire minter into a subdi-
rectory with the command,

mkdir f57 ; mv NOID f57

CDL 0.423 2004-11-21 2

NOID(1) Batch Identifier Infrastructure NOID(1)

A minter may be set up on a web server and operated remotely, allowing the NAA to eas-
ily distribute name assigment to certain trusted parties. The URL INTERFACE section
describes the procedure in detail. Once set up, you could mint one identifier by entering a
URL such as the following into your web browser:

http://foo.ucop.edu/nd/noidu_f57?mint+1

Using a different procedure, you can also make your identifier bindings (e.g., location
information) visible to the Internet via a few web server configuration directives. The
NAME RESOLUTION section explains this further.

IDENTIFIER − AN ASSOCIATION SUPPORTED BY BINDINGS
An identifier is not a string of character data. An identifier is an association between a
string of data and an object. It doesn’t matter whether the object is physical, digital, or
conceptual — without an association, a string of data is just data. As an association,
however, it makes sense for an identifier to do the things, metaphorically, that we all
speak of its doing. It’s nonsense to talk about a data string breaking, or about it being
strong, maintained, and authentic.

To identify an object is to enunciate an association between it and a representative string,
such as ‘‘my father’’ or ‘‘ISBN 0596000278’’. What gives your claim credibility is a set
of verifiable assertions about the object, such as age, height, title, or number of pages.
While verifiability is outside the scope of the noid utility, you can use a minter at least to
record assertions supporting an association by binding arbitrary named elements and val-
ues to the identifier. Noid database elements can be up to 4 gigabytes in length, and one
noid minter is capable of recording billions of identifiers.

You don’t hav e to use the noid binding features at all if you prefer to keep track of your
bindings elsewhere, such as in a separate database management system (DBMS) or on a
piece of paper. At a minimum, for each noid generated, the minter automatically stores a
‘‘circulation’’ record asserting who generated it and when.

An arbitrary database system can complement a noid minter without any awareness or
dependency on noids. On computers, identifier bindings are typically managed using
methods that at some point map identifier strings to database records and/or to filesystem
entries; the latter effectively uses the filesystem as a DBMS. The structures and logistics
for bindings maintenance may reside entirely with the minter database, entirely outside
the minter database, or anywhere in between. An individual organization defines what-
ev er maintenance configuration suits it best.

A persistent identifier is an identifier that an organization commits to retain in perpetuity.
Associations, the sine qua non of identifiers, last only as long as they (in particular, their
bindings) are maintained. Often maintaining identifiers goes hand in hand with control-
ling the objects to which they are bound. No technology exists that automatically man-
ages objects and associations; persistence is a matter of service commitment, tools that
support that commitment, and information that allows users receiving identifiers to make
the best judgments regarding an organization’s ability and intention to maintain those
identifiers.

It will be normal for other organizations to maintain their own assertions about identifiers
that you issue, and vice versa. In general there is nothing to prevent discrepancies among

CDL 0.423 2004-11-21 3

NOID(1) Batch Identifier Infrastructure NOID(1)

sets of assertions. Effectively, the association — the identifier — is in the eye of the
beholder. As a simple example, authors create bibliography entries for cited works, and
in that process they make their claims (often with small errors) about such things as the
author and title of the identified thing. It is common for a provider of an identifier-driven
service such as digital object retrieval to allow users to review its own, typically better-
maintained sets of identifier assertions, even if it minted none of the identifiers that it ser-
vices. We call such an organization a Name Mapping Authority because it ‘‘maps’’ iden-
tifiers to services.

For persistence across decades or centuries, an archiving organization will be perceived
as reliable to the extent that it can enunciate not only the identity but also the support pol-
icy for objects in its care. An object may have been inherited through a chain of steward-
ship stretching back to a completely unrelated and now defunct organization that created
and named it. For its original identifier to have persisted across the intervening years, it
must look the same as when first minted. At that particular time, global uniqueness
required the minted identifier to bear the imprint of the original issuing organization (the
Name Assigning Authority), which long ago ceased to have any responsibility for its per-
sistence. There is thus no conflict in a mapping authority servicing identifiers that origi-
nate in many different assigning authorities.

These notions of service and persistence are built into the ARK (Archival Resource Key)
naming scheme that noid minters were partly designed to support; please see
<http://ark.cdlib.org/> for more information.

COMMANDS AND MODES
Once again, the overall utility summary is

noid [−f Dbdir] [−vh] Command Arguments

In all invocations, output is intended to be both human− and machine−readable. Bulk
operations are possible, allowing multiple minting and binding commands within one
invocation. In particular, if Command is given as a ‘‘−’’ argument, then actual Com-
mands are read in bulk from the standard input.

The database directory string, Dbdir, may be given with the NOID environment variable,
overridable with the −f option. If those strings are empty, the name or link name of the
noid executable (argv[0] for C programmers) is checked to see if it reveals Dbdir. If that
check (described next) fails, Dbdir is taken to be the current directory.

To check the executable for Dbdir, the final pathname component (tail) of its name is
examined and split at the first ‘‘_’’ encountered. If none, the check fails. Otherwise, the
check is considered successful and the latter half is taken as naming Dbdir relative to the
current directory. This mechanism is designed for cases when it is inconvenient to spec-
ify Dbdir (such as in the URL interface) or when you are running several minters at once.
As an example, /usr/bin/noid_fk9 specifies a Dbdir of fk9.

All files associated with a minter will be organized in a subdirectory, NOID, of Dbdir; this
has the consequence that there can be at most one minter in a directory. To allow noid to
create a new minter in a directory already containing a NOID subdirectory, remove or
rename the entire NOID subdirectory.

CDL 0.423 2004-11-21 4

NOID(1) Batch Identifier Infrastructure NOID(1)

The noid utility may be run as a URL-driven web server application, such as in a CGI that
allows name assignment via remote operator. If the executable begins noidu..., the noid
URL mode is in effect. Input parameters, separated by a ‘‘+’’ sign, are expected to arrive
embedded in the query part of a URL, and output will be formatted for display on an ordi-
nary web browser. An executable of noidu_xk4, for example, would turn on URL mode
and set Dbdir to xk4. This is further described under URL INTERFACE.

The noid utility may be run as a name resolver running behind a web server. If the
executable begins noidr..., the noid resolver mode is in effect, which means that com-
mands will be read from the standard input (as if only the ‘‘−’’ argument had been given)
and the script output will be unbuffered. This mode is designed for machine interaction
and is intended to be operated by rewriting rules listed in a web server configuration file
as described later under NAME RESOLUTION AND REDIRECTION INTERFACE.

At minter creation time, a report summarizing its properties is produced and stored in the
file, NOID/README. This report may be useful to the organization articulating the oper-
ating policy of the minter. In a formal context, such as the creation of a minter for long
term identifiers, that organization is the Name Assigning Authority.

The −v option prints the current version of the noid utility and −h prints a help message.

In the Command list below, capitalized symbols indicate values to be replaced by the
caller. Optional arguments are in [brackets] and (ABC) means one of A or B or C.

noid dbcreate [Template [Term [NAAN NAA SubNAA]]]
Create a database that will mint (generate) identifiers according to the given Tem-
plate and Term. As a side-effect this causes the creation of a directory, NOID, within
Dbdir. If you have sev eral generators, it may be convenient to operate each from
within a Dbdir that uniquely identifies each Template; for example, you might
change to a directory that you named fk6 after the Template fk.rdeedde (‘‘fk’’
followed by 6 variable characters) of the minter that resides there.

The Term declares whether the identifiers are intended to be ‘‘long’’, ‘‘medium’’ (the
default), or ‘‘short’’. A short term identifier minter is the only one that will re-mint
identifiers after the namespace is exhausted, simply returning the oldest previously
minted identifier. As mentioned earlier, howev er, some namespaces are unbounded
and never run out of identifiers.

If Term is ‘‘long’’, the arguments NAAN, NAA, and SubNAA are required, and all
minted identifiers will be returned with the NAAN and a ‘‘/’’ prepended to them.
The NAAN is a namespace identifier and should be a globally unique Name Assign-
ing Authority (NAA) number. Apply for one by email to ark at cdlib dot org. For
testing purposes, you may use ‘‘00000’’ as a non-unique NAAN.

If Template is not supplied, the minter freely binds any identifier that you submit
without validating it first. In this case it also mints medium term identifiers under
the default Template, .zd.

noid mint N [Element Value]
Generate N identifiers. If other arguments are specified, for each generated noid,
add the given Element and bind it to the given Value. [Element−Value binding upon

CDL 0.423 2004-11-21 5

NOID(1) Batch Identifier Infrastructure NOID(1)

minting is not implemented yet.]

There is no ‘‘unmint’’ command. Once an identifier has been circulated in the out-
side world, it may be hard to withdraw because external users and systems will have
bound it with their own assertions. Even within the minting organization, removing
all of the identifier’s supporting bindings could entail actions such as file deletion
that are outside the scope of the minter. While there is no command capable of
withdrawing a circulated identifier, it is nonetheless easy to queue an identifier for
reminting and to hold it against the possibility of minting at all. Identifiers that are
long term should be treated as non-renewable resources except when you are abso-
lutely sure about recycling them.

noid peppermint N [Element Value]
[This command is not implemented yet.] Generate N ‘‘peppered’’ identifiers. A
peppered identifier is a regular identifier concatenated with a ‘‘!’’ character and a
randomly generated cookie — the pepper — which serves as a kind of per-identi-
fier password. (Salt is a technical term for some extra data that makes it harder to
crack encrypted values; we use pepper for some extra data that makes it harder to
crack unencrypted values.) To provide an extra level of database security, the base
identifier, which is everything up to the ‘‘!’’, should be used in all public communi-
cation, but the complete peppered identifier is required for all noid operations that
would change values in the database.

As with the mint command, if other arguments are specified, for each generated
noid, add the given Element and bind it to the given Value.

noid bind How Id Element Value
For the given Id, bind the Element to Value according to How. The Element and
Value may be arbitrary strings. There are two reserved Element names allowing Val-
ues to be entered that are too large or syntactically inconvenient (depending on the
calling environment’s quoting restrictions) to pass in as command-line tokens.

If the Element is ‘‘:’’ and no Value is present, lines are read from the standard input
up to a blank line; they will contain Element-colon-Value pairs in essentially email
header format, with long values continued on indented lines. If the Element is ‘‘:−’’
and no Value is present, lines are read from the standard input up to end−of−file; the
first non−comment, non-blank line must have an Element-colon to specify an Ele-
ment name, and all the remaining input (up to EOF) is taken as its corresponding
Value. Lines beginning with ‘‘#’’ are considered ‘‘comment’’ lines and are skipped.

The How argument specifies one of the following kinds of binding. Of these, the
set, add, insert, and purge kinds ‘‘don’t care’’ if there is no current binding.

new Only if Element does not exist, create a new binding.

replace
Only if Element exists, undo any old bindings and create a new binding.

set Means new or, failing that, replace.

CDL 0.423 2004-11-21 6

NOID(1) Batch Identifier Infrastructure NOID(1)

append
Only if Element exists, place Value at the end of the old binding.

add Means new or, failing that, append.

prepend
Only if Element exists, place Value at the beginning of the old binding.

insert Means new or, failing that, prepend.

delete Remove any trace of Element, returning an error if it did not exist to begin
with.

purge Remove any trace of Element, returning success whether or not it existed to
begin with.

mint Means new, but ignore the Id argument (actually, confirm that it was given as
new) and mint a new Id first.

peppermint
[This kind of binding is not implemented yet.] Means new, but ignore the Id
argument (new) and peppermint a new Id first.

The RULE−BASED MAPPING section explains how to set up retrieval using non-
stored values.

noid fetch Id [Element ...]
For the noid, Id, print with labels all bindings for the given Elements. If no Element
is given, find and print all bindings for the given Id. This is the verbose version of
the get command, in that it prints headers and labels for everything it finds.

noid get Id [Element ...]
For the noid, Id, print without labels all bindings for the given Elements. If no Ele-
ment is given, find and print all bindings for the given Id. This is the quiet version
of the fetch command, in that it suppresses all headers and labels. Between each
Element requested, the output will be separated by a blank line.

noid hold (setrelease) Id ...
Place or remove a hold on one or more Ids. A hold placed on an Id that has not been
minted will cause it to be skipped when its turn to be minted comes around. A hold
placed on an Id that has been minted will make it impossible to queue (typically for
recycling). Minters of long term identifiers automatically place a hold on every
minted noid. Holds can be placed or removed manually at any time.

noid queue (nowfirstlvfTime) Id ...
Queue one or more Ids for minting. Time is a number followed by units, which can
be d for days or s for seconds (the default units). This can be used to recycle noids
now or after a delay period. With first, the Id(s) will be queued such that they will
be minted before any of the time delayed entries. With lvf (Lowest Value First), the
lowest valued identifier (intended for use with numeric identifiers) will be taken
from the queue for minting before all others. [needs testing]

CDL 0.423 2004-11-21 7

NOID(1) Batch Identifier Infrastructure NOID(1)

noid validate (Template−) Id ...
Validate one or more Ids against a given Template, which, if given as ‘‘−’’, causes
the minter’s native Template to be used.

TEMPLATES
A Template is a coded string of the form Prefix.Mask that is given to the noid dbcreate
command to govern how identifiers will be minted. The Prefix, which may be empty,
specifies an initial constant string. For example, upon database creation, in the Template

tb7r.zdd

the Prefix says that every minted identifier will begin with the literal string tb7r. Each
identifier will end in at least two digits (dd), and because of the z they will be sequen-
tially generated without limit. Beyond the first 100 mint operations, more digits will be
added as needed. The minted noids will be, in order,

tb7r00, tb7r01, ..., tb7r100, tb7r101, ..., tb7r1000, ...

The period (‘‘.’’) in the Template does not appear in the identifiers but serves to separate
the constant first part (Prefix) from the variable second part (Mask). In the Mask, the first
letter determines either random or sequential ordering and the remaining letters each
match up with characters in a generated identifier. Perhaps the best way to introduce tem-
plates is with a series of increasingly complex examples.

.rddd to mint random 3−digit numbers, stopping after 1000th

.sdddddd to mint sequential 6−digit numbers, stopping after millionth

.zd sequential numbers without limit, adding new digits as needed

bc.rdddd random 4−digit numbers with constant prefix bc

8rf.sdd sequential 2−digit numbers with constant prefix 8rf

.se sequential extended-digits (from 0123456789bcdfghjkmnpqrstvwxz)

h9.reee random 3−extended−digit numbers with constant prefix h9

.zeee unlimited sequential numbers with at least 3 extended-digits

.rdedeedd random 7−char numbers, extended-digits at chars 2, 4, and 5

.zededede unlimited mixed digits, adding new extended-digits as needed

sdd.sdede sequential 4−mixed−digit numbers with constant prefix sdd

.rdedk random 3 mixed digits plus final (4th) computed check character

.sdeeedk 5 sequential mixed digits plus final extended-digit check char

.zdeek sequential digits plus check char, new digits added as needed

63q.redek prefix plus random 4 mixed digits, one of them a check char

The first letter of the Mask, the generator type, determines the order and boundedness of
the namespace. For example, in the Template .sddd, the Prefix is empty and the s says
that the namespace is sequentially generated but bounded. The generator type may be
one of,

CDL 0.423 2004-11-21 8

NOID(1) Batch Identifier Infrastructure NOID(1)

r for quasi-randomly generated identifiers,

s for sequentially generated identifiers, limited in length and number by the length of
the Mask,

z for sequentially generated identifiers, unlimited in length or number, re-using the
most significant mask character (the second character of the Mask) as needed.

Although the order of minting is not obvious for r type minters, it is ‘‘quasi−random’’ in
the sense that on your machine a minter created with the same Template will always pro-
duce the same sequence of noids over its lifetime. Quasi-random is a shade more pre-
dictable than pseudo-random (which, techically, is as random as computers get). This is a
feature designed to help noid managers in case they are forced to start minting again from
scratch; they simply process their objects over in the same order as before to recover the
original assignments.

After the generator type, the rest of the Mask determines the form of the non-Prefix part,
matching up letter-for-character with each generated noid character (an exception for the
z case is described below). In the case of the Template xv.sdddd, the last four d Mask
characters say that all identifiers will end with four digits, so the last identifier in the
namespace is xv9999.

When z is used, the namespace is unbounded and therefore identifiers will eventually
need to grow in length. To accommodate the growth, the second character (e or d) of the
Mask will be repeated as often as needed; for instance, when all 4−digit numbers are used
up, a 5th digit will be added. After the generator type character, Mask characters have the
following meanings:

d a pure digit, one of { 0123456789 }

e an ‘‘extended digit’’, one of { 0123456789bcdfghjkmnpqrstvwxz } (lower case only)

k a computed extended digit check character; if present, it must be the final Mask
character

The set of extended digits is designed to help create more compact noids (a larger names-
pace for the same length of identifier) and discourage ‘‘accidental semantics’’, namely,
the introduction of strings that have unintended but commonly recognized meanings.
Opaque identifiers are desirable in many situations and the absence of vowels in extended
digits is a step in that direction. To reduce visual mismatches, there is also no letter ’l’
(ell) because it is often mistaken for the digit ’1’.

The optional k Mask character, which may only appear at the end, enables detection of
cases when a single character is mistyped and when two adjacent characters have been
transposed — the most common transcription errors. A final k in the Mask will cause a
check character to be appended after first computing it on the entire identifier generated
so far, including the NAAN if one was specified at database creation time. For example,
the final digit 1 in

13030/f54x54g11

was first computed over the string 13030/f54x54g1 and then added to the end.

CDL 0.423 2004-11-21 9

NOID(1) Batch Identifier Infrastructure NOID(1)

RULE−BASED MAPPING
Any Element may be bound to a class of Ids such that retrieval against that Element for
any Id in the class returns a computed value when no stored value exists. The class of Ids
is specified via a Perl regular expression that will be checked for a match against Ids sub-
mitted via a retrieval operation (get or fetch) that names any Element bound in this man-
ner. If the match succeeds, the element Value that was bound with the Id class is used as
the right-hand side of a Perl substitution, and the resulting transformation is returned.
Here we call this rule-based mapping. It is probably best explained by working through
the examples below.

To set up rule-based mapping for an Id class, construct a bind operation with an Id of the
form :idmap/Idpattern, where Idpattern is a Perl regular expression. Then choose an
Element name that you wish to have trigger the pattern match check whenever that Ele-
ment is requested via a retrieval operation and a stored value does NOT exist; any Ele-
ment will work as long as you use it for both binding and retrieving. Finally, specify a
Value to be used as replacement text that transforms matching Ids into computed values
via a Perl s/// substitution. As a simple example,

noid bind set :idmap/ˆft redirect g7h

would cause any subsequent retrieval request against the Element named ‘‘redirect’’ to try
pattern matching when no stored value is found. If the Id begins with ‘‘ft’’, it would then
try to replace the ‘‘ft’’ with ‘‘g7h’’ and return the result as if it were a stored value. So if
the Id were ft89xr2t, the command

noid get ft89xr2t redirect

would return g7h89xr2t. Fancier substitutions are possible, including replacement
patterns that reference subexpressions in the original matching Idpattern. For example,
the second command below,

noid bind set ’:idmap/ˆft([ˆx]+)x(.*)’ my_elem ’$2/g7h/$1’
noid get ft89xr2t my_elem

would return r2t/g7h/89. For ease of implementation, internally this kind of binding
is stored and reported (which can be confusing) as the special noid, :idmap/Element,
under element name Idpattern.

URL INTERFACE
Any number of minters can be operated behind a web server from a browser or any tool
that activates URLs. This section describes a one-time set up procedure to make your
server aware of minters, followed by another set up procedure for each minter. The one-
time procedure involves creating a directory in your web server document tree where you
will place one or more noid minter databases. In this example, the directory is htdocs/nd
and we’ll assume the noid script was originally installed in /usr/local/bin.

mkdir htdocs/nd
cp -p /usr/local/bin/noid htdocs/nd/

The second command above creates an executable copy of the noid script that will be
linked to for each minter you intend to expose to the web. To make your server recognize
such links, include the line

CDL 0.423 2004-11-21 10

NOID(1) Batch Identifier Infrastructure NOID(1)

ScriptAliasMatch ˆ/nd/noidu(.*) "/srv/www/htdocs/nd/noidu$1"

in your server configuration file and restart the server before trying the commands that
follow. If you did not install the supporting Noid.pm module normally, you may also
have to store a copy of it next to the script. This completes the one-time server set up.

Thereafter, for each minter that you wish to expose, it must first be allowed to write to its
own database when invoked via the web server. Because it will be running under a spe-
cial user at that time, before you create it, first become the user that your server runs
under. In this example that user is ‘‘wwwrun’’.

cd htdocs/nd
su wwwrun
noid dbcreate kt.reeded
mkdir kt5
mv NOID kt5/
ln noid noidu_kt5

The third command above creates a minter for noids beginning with kt followed by 5
characters. The minter is then moved into its own directory within htdocs/nd. Finally,
the last command makes a hard link (not a soft link) to the noid script, which for this
minter will be invoked under the name noidu_kt5.

The URL interface is similar to the command line interface, but Commands are passed in
via the query string of a URL where by convention a plus sign (‘‘+’’) is used instead of
spaces to separate arguments. You will likely want to set up access restrictions (e.g., with
an .htaccess file) so that only the parties you designate can generate identifiers. There is
also no dbcreate command available from the URL interface.

To mint one identifier, you could enter the following URL into your web browser, but
replace ‘‘foo.ucop.edu’’ with your server’s name:

http://foo.ucop.edu/nd/noidu_kt5?mint+1

Reload to mint again. If you change the 1 to 20, you get twenty new and different noids.

http://foo.ucop.edu/nd/noidu_kt5?mint+20

To bind some data to an element called ‘‘myGoto’’ under one of the noids already minted,

http://foo.ucop.edu/nd/noidu_kt5?
bind+set+13030/kt639k9+myGoto+http://foo.ucsd.edu/

In this case we stored a URL in ‘‘myGoto’’. This kind of convention can underly a redi-
rection mechanism that is part of an organization’s overall identifier resolution strategy.
To retrieve that stored data,

http://foo.ucop.edu/nd/noidu_kt5?get+13030/kt639k9+myGoto

Bulk operations can be performed over the web by invoking the URL with a query string
of just ‘‘−’’, which will cause the minter to look for noid commands, one per line, in the
POST data part of the HTTP request. If you put noid commands in a file myCommands
and run the Unix utility

CDL 0.423 2004-11-21 11

NOID(1) Batch Identifier Infrastructure NOID(1)

curl --data-binary @myCommands \
’http://dot.ucop.edu/nd/noidu_kt5?-’

you could, for example, change the ‘‘myGoto’’ bindings for 500 noids in that one shell
command. The output from each command in the file will be separated from the next (on
the standard output) by a blank line.

NAME RESOLUTION AND REDIRECTION INTERFACE
In a URI context, name resolution is a computation, sometimes multi−stage, that trans-
lates a name into associated information of a particular type, often another name or an
address. A resolver is a system that can perform one or more stages of a resolution.
Noid minters can be set up as resolvers.

In our case, we’re interested in automatically translating access requests for each of a
number of identifiers into requests for another kind of identifier. This is one tool in the
persistent access strategy for naming schemes such as URL, ARK, PURL, Handle, DOI,
and URN. You can use a noid minter to bind a second name to each identifier, even to
identifiers that the minter did not generate. In principle, this will work with names from
any scheme.

With web browsers, a central mechanism for name resolution is known as the server redi-
rect, and mainstream web servers can easily be configured to redirect a half million dif-
ferent names without suffering in performance. You might choose not to use native web
server redirects if you require resolution of several million names, or if you require soft-
ware and infrastructure for non-URL-based names. Whatever your choice, maintaining a
table that maps the first name to the second is an unavoidable burden.

As with the URL interface, any number of resolvers (minters underneath) can be operated
behind a web server from a browser or a tool that activates URLs. This section describes
a one-time set up procedure to make your server aware of resolvers, followed by another
set up procedure for each resolver. The one-time procedure involves creating a directory
in your web server document tree where you will place one or more noid resolver
databases. In this example (and in the previous example), we use htdocs/nd:

mkdir htdocs/nd
cp -p /usr/local/bin/noid htdocs/nd/

The second command above creates an executable copy of the noid script that will be
linked to for each resolver you intend to expose. To make your server recognize such
links, include the line (this is slightly different from the similar line in the previous sec-
tion),

ScriptAliasMatch ˆ/nd/noidr(.*) "/srv/www/htdocs/nd/noidr$1"

in your server configuration file. If you did not install the supporting Noid.pm module
normally, you may also have to store a copy of it next to the script. Then include the fol-
lowing lines in the configuration file; they form the start of a rewriting rule section that
you will add to later for each resolver that you set up.

CDL 0.423 2004-11-21 12

NOID(1) Batch Identifier Infrastructure NOID(1)

RewriteEngine on
These next two files and their containing
directory should be owned by "wwwrun".
RewriteLock /var/log/rewrite/lock
RewriteLog /var/log/rewrite/log
RewriteLogLevel 9

The non-comment lines above initialize the rewriting system, identify the lock file used to
synchronize access to the resolver, and identify the log file which can help in finalizing
the exact rewrite rules that you use; disable logging with the default RewriteLogLevel
value of 0, or set it as high as 9, with higher numbers producing more detailed informa-
tion. This completes the one-time server set up for resolvers.

Thereafter, for each resolver that you wish to run, you need to set up a noid database and
create a link of the form noidr... so that the noid script can be invoked in resolution mode.
Unlike the URL interface, the resolution interface does not itself mint from the underlying
minter. A separate URL interface may still be set up to mint and bind identifiers in the
resolver database, or minting and binding can take place off the net.

In what follows, we will assume that you have set up a noid database with the same loca-
tion and template as in the previous section. As before, the server is assumed to run
under the user ‘‘wwwrun’’ and the database resides in htdocs/nd/kt5. As if our intentions
included persistent identification, the minter in this example is for generating long term
identifiers.

cd htdocs/nd
noid dbcreate kt.reeded long 13030 cdlib.org dpg
mkdir kt5
mv NOID kt5/
ln noid noidr_kt5

The last command makes a new hard link (not a soft link) to the noid script, which for
this resolver will be invoked under the name noidr_kt5. The resolution interface is not
called by a URL directly, but is invoked once upon server startup, where the noidr... pre-
fix tells it to run in resolution mode. In this mode it loops, waiting for and responding to
individual resolution attempts from the server itself.

To set up an individual resolver, define a Rewrite Map followed by a set of Rewrite Rules.
This is done using server configuration file lines as shown in the next example. As with
any change to the file, you will need to restart the server before it will have the desired
effect.

External resolution; start program once on server start
RewriteMap rslv prg:/srv/www/htdocs/nd/noidr_kt5
Main lookup; add artificial prefix for subsequent testing
RewriteRule ˆ/ark:/(13030/.*)$ "_rslv_${rslv:get $1 myGoto}"

CDL 0.423 2004-11-21 13

NOID(1) Batch Identifier Infrastructure NOID(1)

Test: redirect [R] if it looks like a redirect
RewriteRule ˆ_rslv_([ˆ:]*://.*)$ $1 [R]
Test: strip prefix; pass through [PT] if intended for us
RewriteRule ˆ_rslv_(/.*)$ $1 [PT]
Test: restore value if lookup failed; let come what may
RewriteRule ˆ_rslv_$ %{REQUEST_URI}
Alternative: redirect failed lookup to a global resolver

When a request received by the server matches a Rewrite Rule, an attempt to resolve it
via the running noidr... script is made. In this example, we will need to have bound a
string representing a URL to the value for the fixed element name ‘‘myGoto’’ under each
identifier that we wish to be resolvable. Building on the example from the previous sec-
tion, assume the element ‘‘myGoto’’ holds the same URL as before for the noid
13030/kt639k9. Then a retrieval request made within a browser by entering or click-
ing on

http://foo.ucop.edu/ark:/13030/kt639k9

would result in a server redirect to

http://foo.ucsd.edu/

The resolution result for an identifier is whatever the get returns, which could as easily
have retrieved a stored value as a rule-based value (allowing you to redirect many similar
identifiers with one rule).

This approach to resolution does not address resolver discovery. An identifier found in
the wild need not easily reveal whether it is actionable or resolvable, let alone which sys-
tem or resolver to ask. The usual strategy for contemporary (web era) identifier schemes
is to rely on some combination of well−known, scheme-dependent resolvers and web
proxying by embedding identifiers in URLs. For example, global resolution for a non-
proxied URN or Handle relies on a hard-coded but undisclosed (except to the program
code) internet address from which to start the resolution process. An ARK, a PURL, or a
proxied Handle or URN tend to rely on a disclosed starting point. Whatever method is
used for discovery, a noid resolver can in principle be used to resolve identifiers from any
scheme.

NOID CHECK DIGIT ALGORITHM
The following describes the Noid Check Digit Algorithm (NCDA). Digits in question are
actually ‘‘extended digits’’, or xdigits, which form an ordered set of R digits and charac-
ters. This set has radix R. In the example described below, we use a specific set of R=29
xdigits.

When applied to substrings of well-formed identifiers, where the length of the substring is
less than R, the NCDA is ‘‘perfect’’ for single digit and transposition errors, by far the
most common user transcription errors (see David Bressoud, Stan Wagon, ‘‘Computa-
tional Number Theory, 2000, Key College Publishing’’). The NCDA is complemented by
well-formedness rules that confirm the placement of constant data, including fixed labels
and any characters that are not extended digits. After running the NCDA on the selected
substring, the resulting check digit, an xdigit actually, is used either for comparing with a
received check digit or for appending to the substring prior to issuing the identifier that

CDL 0.423 2004-11-21 14

NOID(1) Batch Identifier Infrastructure NOID(1)

will contain it.

For the algorithm to work, the substring in question must be less than R characters. The
extended digit set used in the current instance is a sequence of R=29 printable characters
defined as follows:

xdigit: 0 1 2 3 4 5 6 7 8 9 b c d f g
value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

xdigit: h j k m n p q r s t v w x z
value: 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Each xdigit in the identifier has the corresponding ordinal value shown. Any character
not in the xdigit set is considered in the algorithm to have an ordinal value of zero.

A check digit is an xdigit computed from the base substring and then appended to form
the ‘‘checked substring’’ (less than R+1 characters long). To determine if a received
identifier has been corrupted by a single digit or transposition error, the relevant substring
is extracted and its last character is compared to the result of the same computation per-
formed on the preceding substring characters.

The computation has two steps. Consider a base substring (no check digit appended)
such as

13030/xf93gt2 (base substring)

Step 1. Check that the substring is well−formed, that is, that all non-xdigit characters
(often constant character data) are exactly where expected; if not, the substring is not
well-formed and the computation aborts. (This step is required to accommodate charac-
ters such as ‘‘/’’ that contribute nothing to the overall computation.)

Step 2. Multiply each character’s ordinal value by its position number (starting at posi-
tion 1), and sum the products. For example,

char: 1 3 0 3 0 / x f 9 3 g t 2
ord: 1 3 0 3 0 0 27 13 9 3 14 24 2
pos: 1 2 3 4 5 6 7 8 9 10 11 12 13

prod: 1 + 6 + 0 +12 + 0 + 0+189+104 +81 +30+154+288 +26=891

Step 3. The check digit is the xdigit whose ordinal value is that sum modulo R (divide
the sum by R and take the remainder).

In the example, 891 = 21 mod R (29) and so the check digit is q. This is appended to
obtain the ‘‘checked substring’’, which is

13030/xf93gt2q (substring with check digit appended)

What follows is a two-part proof that this algorithm is ‘‘perfect’’ with respect to single
digit and transposition errors.

Lemma 1: The NCDA is guaranteed against single-character errors.

Proof: We must prove that if two strings differ in one single character, then the check
digit (xdigit) also differs. If the n−th xdigit’s ordinal is d in one string and e in another,
the sums of products differ only by

CDL 0.423 2004-11-21 15

NOID(1) Batch Identifier Infrastructure NOID(1)

(... + nd + ...) - (... + ne + ...) = n(d - e)

The check digits differ only if n(d − e) is not 0 mod R. Assume (contrapositively) that
n(d − e) does equal 0 mod R. First, we know that n(d − e) is not zero because n is posi-
tive and d is different from e. Therefore, there must be at least one positive integer i such
that

n(d - e) = Ri => (n/i)(d - e) = R

Now, because R is prime,

either (a) n/i = 1 and d - e = R
or (b) n/i = R and d - e = 1

But (a) cannot hold because xdigit ordinals differ by at most R−1. This leaves (b), which
implies that there is an integer i = n/R. But since R is prime and n (a position number) is
a positive integer less than R, then 0 < i < 1, which cannot be true. So the check digits
must differ.

Lemma 2: The NCDA is guaranteed against transposition of two single characters.

Proof: Non-contributing characters (non−xdigits) transposed with other characters will
be detected in Step 1 when checking the constraints for well-formedness (e.g., the ‘‘/’’
must be at position 6 and only at position 6). Therefore we need only consider transposi-
tion of two xdigit characters. We must prove that if one string has an xdigit of ordinal e
in position i and an xdigit of ordinal d in position j, and if another string is the same
except for having d in position i and e in position j, then the check digits also differ. The
sums of the products differ by

(... + ie + ... + jd + ...) - (... + id + ... + je + ...)
= (ie + jd) - (id + je) = e(i - j) + d(j - i)
= d(j - i) - e(j - i) = n(d - e)

where n = j − i > 0 and n < R. The check digits differ only if n(d − e) = 0 mod R. This
reduces to the central statement of Lemma 1, which has been proven.

TO DO
Add features that are documented but not implemented yet: Element-Value binding upon
minting; the peppermint command. The append and prepend kinds of binding cur-
rently have string-level semantics (new data is added as characters to an existing ele-
ment); should there also be list-level semantics (new data added as an extra subelement)?

Add extra options for dbcreate. An option to specify one or more identifier labels to
strip from requests, and one canonical label to add upon minting and reporting. An
option to set the initial seed for quasi-random ordering. Utilize the granular BerkeleyDB
transaction and locking protection mechanisms.

Extend the Template Mask to allow for other character repertoires with prime numbers of
elements. These would trade a some eye-friendliness for much more compact identifiers
(cf. UUID/GUID).

CDL 0.423 2004-11-21 16

NOID(1) Batch Identifier Infrastructure NOID(1)

{ 0-9 a-z _ } cardinality 37, mask char v
{ 0-9 a-z A-Z _ + * @ # } cardinality 67, mask char w
Visible ASCII - { / . \ % - } cardinality 89, mask char c

Add support for simple file management associated with identifiers. For example, mint-
ing (and reminting) the noid xv8t984 could result in the creation (and re−creation) of a
corresponding canonical directory xv/8t/98/4/.

BETA SOFTWARE
This utility is in the beta phase of development. It is open source software written in the
Perl scripting language with strictest type, value, and security checking enabled. While
its readiness for long term application is still being evaluated, it comes with a growing
suite of regression tests (currently about 250).

COPYRIGHT AND LICENSE
Copyright 2002−2004 UC Regents. BSD-type open source license.

BUGS
Probably. Please report to jak at ucop dot edu.

FILES
NOID directory containing all database files related to a minter

NOID/noid.bdb the BerkeleyDB database file at the heart of a minter

NOID/README the creation record containing minter analysis details

SEE ALSO
dbopen (3), perl (1), uuidgen (1), <http://www.cdlib.org/inside/diglib/ark/>

AUTHORS
John A. Kunze, Michael A. Russell

PREREQUISITES
Perl Modules: Noid, BerkeleyDB, Text::ParseWords, Getopt::Long, Fcntl, Sys::Hostname

Script Categories:

CGI UNIX : System_administration Web

CDL 0.423 2004-11-21 17

