
WebSphere MQ Telemetry Transport
C language implementation

Porting Guide
Version 1.2

30 November, 2003

SupportPac author
Ian Harwood

ian_harwood@uk.ibm.com

mailto:ian_harwood@uk.ibm.com

IA93

 ii

Property of IBM

IA93

 iii

Take Note!

Before using this report be sure to read the general information under "Notices".

Third Edition, November 2003

IA93

 iv

This edition applies to Version 1.2 of IA93 and to all subsequent releases and modifications unless
otherwise indicated in new editions.

© Copyright International Business Machines Corpora tion 2001 . All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

IA93

 v

Table of Contents
Table of Contents .. v

Notices ... vi

Trademarks and service marks.. vi

Summary of Amendments...vii

Preface..viii

Bibliography.. ix

Chapter 1. Introduction .. 1

Chapter 2. Platform Specifics... 2

Chapter 3. Inter Process Communication (IPC) .. 3

Passing data between tasks ... 3

Notes: Behaviour when compiling as a single task. ... 3

Coordinating access to the send task ... 3

Notes: Behaviour when compiling as a single task. ... 4

Enabling MQIsdp_receivePub() to block with a timeout... 4

Blocking in a multi-task environment ... 4

Blocking in a single task environment.. 5

Notes: Behaviour when compiling as a single task. ... 5

Chapter 4. TCP/IP stacks supported .. 6

Chapter 5. Memory Management... 7

Reasons for increasing memory usage... 7

Memory usage controls .. 7

Debugging memory usage.. 8

Chapter 6. Enabling debug messages.. 9

Chapter 7. Compiling the code and sample applications... 10

IA93

 vi

Notices
The following paragraph does not apply in any country where such provisions are inconsistent with
local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS-IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both: � IBM � MQSeries � WebSphere

The following terms are trademarks of other companies:

• Windows, Microsoft

IA93

 vii

Summary of Amendments
Date Changes

21 February 2003 Initial release

6 June 2003 Version 1.1 release

30 Novemeber 2003 Version 1.2 release

• Modified shared library name to contain wmqtt instead of
MQIsdp - wmqtt.dll on Windows and libwmqtt.so on UNIX

IA93

 viii

Preface
This SupportPac provides a C language implementation of the WMQTT protocol. The code is supplied
pre-built for Windows 2000, Linux on i386 and is supplied with a makefile to compile the code on
these platforms plus AIX, HP-UX and SUN Solaris. The source code is also supplied to enable the
implementation to be modified or ported to other platforms.

This document provides instructions on porting the C implementation to other operating systems.

IA93

 ix

Bibliography
• WebSphere MQ Event Broker 2.1 Programming Guide, IBM Corporation, SC34-6095-00

• WebSphere MQ Event Broker 2.1 Introduction and Planning, IBM Corporation , GC34-6088-00

• WebSphere Business Integration Message Broker V5.0

• WebSphere Business Integration Event Broker V5.0

IA93

 1

Chapter 1. Introduction

Firstly decide whether you want to implement the code so that it runs in a single thread of execution,
or in multiple threads of execution.

As a first step it is recommended to compile the code to run in a single thread of execution, as this is
a relatively straight forward thing to do before moving on to running the code in multiple threads of
execution.

1. To compile the code to run in a single thread of execution define MSP_SINGLE_THREAD
when compiling the source code. This requires a C library and a TCP/IP library in order to
compile. See Platform Specifics and TCP/IP stacks supported for more information about this.

2. To compile the code to run in multiple threads of execution do not define
MSP_SINGLE_THREAD when compiling. This requires a C library, a TCP/IP library and
some OS specific functionality for doing Inter Process Communication and task coordination.
See Inter Process Communication for more information about this.
There are three threads as follows:

• ‘The send task’ – This is the thread that writes to the TCP/IP socket, queues data to
sent and received and retries any failed transmissions.

• ‘The receive task’ – This is the thread that reads from the TCP/IP socket. It simply
passes any received data to the send task.

• ‘The API task’ – This is the thread of execution of the user application which uses the
WMQTT API.

IA93

 2

Chapter 2. Platform Specifics
Platform specific includes and macro definitions should be limited to mspsh.h where possible.

Some useful macros are available, which may be defined, if certain C library functions are not
available:

• MSP_NO_LOCALTIME - No localtime() function is available. This macro disables some
datetime formatting in the mspLog function (mspsh.c)

• MSP_NO_REALLOC - No realloc() function is available. mspRealloc (mspsh.c) does a
malloc followed by a free instead.

• MSP_NO_ISPRINT - No isprint() function is available. This macro disables some formatting in
the mspLogHex function (mspsh.c)

• MSP_NO_TIME - No time() function is available. This macro causes a time() function
prototype to be defined in mspsh.h. A function must be implemented in mspsh.c that
conforms to this prototype and returns the number of seconds from an epoch (usually 00:00
January 1st 1970).

• MSP_NO_USHORT - No type definition exists for C type u_short (unsigned short). This
macro causes a type definition to be generated.

• MSP_NO_UINT - No type definition exists for C type u_int (unsigned int). This macro causes
a type definition to be generated.

• MSP_NO_ULONG - No type definition exists for C type u_long (unsigned long). This macro
causes a type definition to be generated.

The following type definitions are required in MQIsdp.h for the following types. By default these types
are defined to be int, which is fine if the code is being compiled to run in a single thread, as they are
not used.

• MBH – IPC handle (Mailbox HANDLE on Windows 2000, pipe on Unix)
See Inter Process Communication, Passing data between tasks.

• MTH – Mutex semaphore handle (HANDLE on Windows 2000, int on Unix)
See Inter Process Communication, Coordinating access to the send task.

• MSH – Resource semaphore handle (HANDLE on Windows 2000, struct on Unix)
See Inter Process Communication, Enabling MQIsdp_receivePub() to block with a timeout.

 Other required macros in mspsh.h are:

• MSP_NULL_MAILBOX - a NULL value for type MBH
• MSP_NULL_MUTEX - a NULL value for type MTH
• MSP_NULL_SEMAPHORE - a NULL value for type MSH
• MSP_IPC_WAIT_FOREVER - a value to indicate that the IPC mechanism should block

forever when reading.
• MSP_INVALID_SOCKET - a value for an invalid socket descriptor (usually -1).

IA93

 3

Chapter 3. Inter Process Communication (IPC)
The Inter Process Communication mechanism is implemented in the following source files: mspipc.c,
mspsh.h, mspclnt.h, MQIsdp.h

Passing data between tasks

Implemented in functions: mspInitialiseIPC, mspRead IPC, mspWriteIPC

The Windows 2000 implementation uses mailslots for interprocess communication. The generic UNIX
version uses pipes.
A fixed length block of data (structure CB_HEAD, size 16 bytes) is written to a mailslot. Part of this
data is a pointer to the data to be passed. The receiving task then reads the data directly from this
memory address, so only the CB_HEAD structure is actually passed via the IPC mechanism.

This mechanism relies on tasks being able to address each others memory. This is not a problem for
threads in a process or tasks in some DOS based systems. If this is not possible, then the IPC
functions to read and write can be adapted to read/write the CB_HEAD structure and the associated
data from/to the IPC subsystem.

The C type for the IPC handle is MBH. This is typedef’ed in MQIsdp.h to be a HANDLE on Windows
2000 and an int on UNIX, but can be whatever is appropriate for your platform.

There are three functions to manage the IPC interface:

mspInitialiseIPC – This function is called at task start up for the send and receive tasks. For
Windows 2000 it sets a mailslot read timeout value. On UNIX the signal SIGPIPE is masked out.

mspReadIPC – This function accepts data from the IPC interface, copying the data into a buffer
supplied by the caller and resizing the buffer if required. Information from the CB_HEAD structure is
also passed back.
This function is used by all tasks. The API and receive tasks do blocking reads of the IPC interface,
whilst the send task reads with a timeout, as it has other things to do such as retrying sends and
managing the TCP/IP connection. For Windows the read timeout is set when the mailslot is initialised.
On UNIX select is used prior to every read to wait for data.

mspWriteIPC – This function writes a CB_HEAD structure to the IPC interface. It accepts a data
buffer plus various parameters to place in the CB_HEAD structure.

If you need to store extra parameters for your particular IPC interface, then each call also accepts an
IPCCB structure (IPC Control Block), with various parameters in, such as a read timeout. Any
additional parameters can be added to this structure which is defined in mspsh.h.

Notes: Behaviour when compiling as a single task.

When compiling to run in a single thread a fixed length buffer the size of the CB_HEAD structure is
allocated in the MSPCCB (Client Control Block) structure defined in mspclnt.h. mspWriteIPC writes to
the buffer and mspReadIPC reads from this buffer. This method keeps the mechanism of passing
data between the API and the send task code relatively similar to the multi task solution, even though
it is now all running in one thread of execution.
Effectively it is now a mechanism for passing data up and down the stack instead of between tasks.

Coordinating access to the send task

Implemented in functions: mspLockMutex, mspReleaseM utex

IA93

 4

The send task (MQIsdp_SendTask(MQISDPTI *) in mspdmn.c) is the main worker task. It manages
the TCP/IP connection, queues up and retries any data to be sent to the WMQTT broker and queues
up data to be received by the application. The send tasks receives data via IPC whenever an API call
is made and whenever the receive task receives data from the network. To keep the implementation
as simple as possible, each task can only have one request at a time to process in its mailslot.
Consequently the API and receive tasks must take it in turns to write to the send mailslot.

Before attempting to write to the send task the sendMutex is obtained by calling mspLockMutex. Data
is then written to the send task and mspReleaseMutex is called when a response has been received
for the send task.

The C type for the mutex handle is MTH. This is typedef’ed in MQIsdp.h to be a HANDLE on Windows
2000, and an integer semaphore id on UNIX, but can be whatever is appropriate for your platform.

The behaviour required for the mutex is that it is normally unlocked (available), only being locked for
the duration that an application is writing data to the send thread.

Notes: Behaviour when compiling as a single task.

These functions should just return 0 when compiled to run in a single thread of execution as no inter-
process coordination is required.

Enabling MQIsdp_receivePub() to block with a timeou t

Implemented in functions: mspWaitForSemaphore, mspS ignalSemaphore, MQIsdp_receivePub

It is optional whether these functions are implemented or not. If blocking receives are not required
then these functions need only to return 0. MQIsdp_receivePub will then return immediately indicating
whether publications are available or not.

Blocking in a multi-task environment

In a multitask environment the MQIsdp_receivePub API calls mspWaitForSemaphore with a timeout.
If the semaphore times out then MQISDP_NO_PUBS_AVAILABLE is returned, otherwise the API call
proceeds to retrieve the publication.
The semaphore is signaled in a number of circumstances:

1. A Quality of Service 0 or 1 publication arrives and the number of publications available to
receive changes from 0 to 1.

2. A Quality of Service 2 PUBREL message is received and the number of publications available
to receive changes from 0 to 1.

3. A MQIsdp_receivePub call successfully completes and there are more publications available.
4. A MQIsdp_receivePub call fails with MQISDP_DATA_TRUNCATED meaning the current

publication has not been received.

When mspWaitForSemaphore completes it should ensure that the semaphore is left in a state that
indicates no messages are available, regardless of whether further messages are available or not.
The semaphore will be signaled again if appropriate once the current publication has been
successfully received.

The C type for the semaphore handle is MSH. This is typedef’ed in MQIsdp.h to be a HANDLE on
Windows 2000, and a structure on UNIX, but can be whatever is appropriate for your platform.
On UNIX the MSH_S structure (see MQIsdp.h) contains a pthread mutex, a pthread condition variable
for doing timed waits and a char variable that holds the message available state. UNIX semaphores
cannot be used, because timed waits cannot be done on UNIX semaphores.

IA93

 5

The behaviour required for the semaphore is that it is normally not signaled, only being in a state of
signaled when a message is available. The semaphore mechanism needs to allow timed waits to be
done.

Blocking in a single task environment

In a single task environment a blocking receive is not so easy to implement. The API cannot simply
block on the TCP/IP socket waiting for data to arrive because there are other things to do such as
retrying messages, managing the TCP/IP connection and keeping the WMQTT connection alive.

A loop is implemented in MQIsdp_receivePub, which calls the send task code. The send task code
blocks on the TCP/IP socket for up to 50% of the keepalive interval. It then checks for any retries
required and the state of the WMQTT connection before returning to the API stating how long it has
waited. The API then deducts this interval from the wait time remaining and calls the send task code
again until the wait time remaining has reached 0.

Notes: Behaviour when compiling as a single task.

mspWaitForSemaphore and mspSignalSemaphore should just return 0 when compiled to run in a
single thread of execution as blocking receives using semaphores cannot be done.

IA93

 6

Chapter 4. TCP/IP stacks supported
Implemented in source files: msptcp.c mspdmn.h

The code was originally written to support the BSD (Berkeley Sockets) socket style interface. This is
the TCP/IP interface that will be used by default. Other TCP/IP socket style interfaces have since
been added:

• Softworks Group (a unit of NetSilicon) FusionTM TCP/IP
Define MSP_FUSION_SOCKETS in mspsh.h when compiling.

• KADAK KwikNet® TCP/IP
Define MSP_KN_SOCKETS in mspsh.h when compiling.

If another TCP/IP interface is to be supported then create a macro name that can be defined at
compile time to enable the code to use that interface. Wrapper functions have been created for the
socket API calls used, which handle the differences between the various TCP/IP implementations:

• msp_close
• msp_connect
• msp_inet_addr
• msp_recv
• msp_select
• msp_send
• msp_socket

IA93

 7

Chapter 5. Memory Management
Implemented in source files: mspsh.c mspsh.h
Implemented in functions: mspMalloc, mspFree, mspRe alloc

Wrapper functions are supplied for doing memory management as named above. These functions
currently do not impose any memory limits on the protocol.

Reasons for increasing memory usage

There are four possible reasons as to why memory usage might increase:

1. A high publication rate to the broker.
If the client application publishes data faster than the broker can process the data then things
will inevitably backup and memory will be consumed queuing data up to send.

2. A high publication rate from the broker.
If the broker publishes data at a rate higher than the application can process the data then the
protocol will queue data locally on the device ready to be received.

3. The application calls MQIsdp_receivePub infrequently.
If the application does not receive data frequently enough then the protocol consumes more
memory queuing up publications.

4. If a TCP/IP error occurs then the protocol queues up data whilst it retries to establish the
TCP/IP connection.

Under normal operation the protocol should use less than 2K of heap with a message size of less
than 100 hundred bytes.

Memory usage controls

Current memory controls in place are defined in mspsh.h:

• Maximum amount of data that can be queued for sending - MSP_DEFAULT_MAX_OUTQ_SZ
- 32Kb.
This size includes all memory required to queue a message, not just the data length that is
being sent. The application will get returned MQISDP_Q_FULL when this limit is reached.

• Maximum amount of data that can be queued for receiving - MSP_DEFAULT_MAX_INQ_SZ -
32Kb.
This size includes all memory required to queue a message, not just the data length that is
being received. If this queue fills up the following will happen:
o QoS 0 messages will be discarded, as they cannot be received
o QoS1 messages will not have the PUBACK sent
o QoS2 messages will not have the PUBREC sent
o The WMQTT broker will at a later time resend any QoS1 or QoS2 message for which it

doesn’t receive an acknowledgement.
• Initial size of the IPC memory buffer for each task – MSP_DEFAULT_IPC_BUFFER_SZ - 128

bytes. This will dynamically grow as required.
• Number of keys in the internal hash tables. MSP_DEFAULT_NUM_HASH_KEYS - 16.

There are two hash tables, one for sending and one for receiving. 16 keys results in an empty
hash table of size 68 bytes and each additional key costs 4 bytes.
A hash table entry is created for each QoS 1 and 2 message sent and each QoS 2 message
received. Each entry is 16 bytes plus the size of the WMQTT message in size.

If you need more control of the memory usage of the protocol then the mspMalloc, mspFree and
mspRealloc functions can be modified to suit your needs. The memory management calls take a
parameter of a pointer to the MSPCMN structure (which is defined in mspsh.h). Any additional
information required can be stored in this structure

IA93

 8

Debugging memory usage

Macro MSP_DEBUG_MEM is defined in mspsh.h.

Setting its value to 0 will result in no memory debugging being done.
Setting its value to 1 will result in a summary being display for each task, recording:

1. The number of calls to mspMalloc.
2. The number of calls to mspFree
3. The amount of memory currently allocated.
4. The maximum amount of memory in use during the life of the task.

Setting its value to 2 will result in the summary as described above, plus each memory address
allocated and freed being recorded. Obviously this produces a lot of output, but can be useful.

IA93

 9

Chapter 6. Enabling debug messages
Various levels of debugging can be enabled by setting up the debug level correctly for each
component.

Debug Levels are:
LOGERROR : Log error conditions only
LOGNORMAL: Log normal operation messages.
LOGIPC : Log Inter Process Communication flows
LOGTCPIP : Log TCP/IP data sent and received
LOGSCADA : Log WMQTT protocol flows
LOGDEBUG : Log any debug messages

The bitwise OR operation can be used to enable logging of multiple areas of the code. E.g.
LOGTCPIP | LOGSCADA will display the protocol flows and associated data being flowed to/from the
broker.

Debug messages may be enabled by setting the logLevel in the MQISDPTI structure prior to starting
the send task (MQIsdp_SendTask), the receive task (MQIsdp_ReceiveTask) and calling
MQIsdp_connect.
The debug level is held in the mspLogOpions field of the MSPCMN structure as follows:

API: Function: MQIsdp_connect, File: mspclnt.c
Set the value of pConnHandle->comParms.mspLogOptions as required.

SEND TASK: Function: mspInitialise, File: msputils.c
Set the value of pHconn->comParms.mspLogOptions as required.

RECEIVE TASK: Function MQIsdp_ReceiveTask, File: mspdmn.c
Set the value of rcvHconn.comParms.mspLogOptions as required.

IA93

 10

Chapter 7. Compiling the code and sample applications
All the code except publish.c, subscribe.c and mspfp.c is compiled into a single shared library called
wmqtt.dll on Windows and libwmqtt.so on Linux.

To assist in compiling the full source code on Windows 2000 and Linux for the WMQTT protocol there
is a makefile which works with GNU make. The makefile can also be used to compile the code for
AIX, HP-UX and SUN Solaris.

Pre requisite software:
--
GNU make is available from http://www.gnu.org/software/make/make.html. Version 3.77 or later is
required.
On Windows the Microsoft Visual Studio compiler is required (Version 6.0 or later)
On Linux the GNU cc compiler is required.
--

When the code is unzipped the source code is in the root directory of the zip file and there are four
subdirectories – bin_win, bin_linux_i386, build and doc.

cd into bin_win, bin_linux or a new directory
run ‘make –f ../build/Makefile’ to compile the code to run in multiple threads.

run ‘make –f ../build/Makefile BT=SINGLE’ to compile the code to run in a single thread. The
BT=SINGLE flag has the effect of defining MSP_SINGLE_THREAD when compiling the code.

-- End of Document --------------------------------------

http://www.gnu.org/software/make/make.html

	Notices
	Trademarks and service marks
	
	

	Summary of Amendments
	Preface
	Bibliography
	Introduction
	Platform Specifics
	Inter Process Communication (IPC)
	Passing data between tasks
	Notes: Behaviour when compiling as a single task.

	Coordinating access to the send task
	Notes: Behaviour when compiling as a single task.

	Enabling MQIsdp_receivePub() to block with a timeout
	Blocking in a multi-task environment
	Blocking in a single task environment
	Notes: Behaviour when compiling as a single task.

	TCP/IP stacks supported
	Memory Management
	Reasons for increasing memory usage
	Memory usage controls
	Debugging memory usage

	Enabling debug messages
	Compiling the code and sample applications

