Apache Derby }

Derby Developer's Guide

Version 10.15

Derby Document build:
February 4, 2020, 5:03:34 PM (PST)

Version 10.15 Derby Developer's Guide

Contents

1670] o)V A 8 [0 1| ST TP PP PPR PP 5
o= 1= T PR 6
ADOUL IS QUITE. ..t e e e e e anes 10
PUrpose of thisS gUIde.......cooi e 10

N E o 1= o o =T PP 10

How this guide iS Organized.........occueiiiiiiiiiiiii e 10

F N 1 €= ST 417 = 1L T o SO 12
The installation dir€CTOTYuiii i 12

Batch files and Shell SCrPLS.......coii i 12

Derby and Java Virtual Machines (JVMS)......cccuuiiiiiiiiiieiiiiee e 12
Derby libraries and classpath/modulepath...........cccccooiiiiiiiiiieee 13
UNIX-SPECITIC ISSUEBS...uitiiieei ittt 13
Configuring file deSCHPLOIS.iiiiiiiiiei e 13

Yol] o] £ T TR TP PRP 13

(6T] =T =2 ST PRI 14
Preparing to UPGrade..... .ottt 14
Upgrading @ database...........ooiiiiiiii 14

JDBC applications and Derby DasSiCS......ccuuuiiiiiiiiiieiiiie e 16
Application developmMeENt OVEIVIEW..........uiiiiiiiiieiiiiie et 16
Derby embedded DaSICS......cuiiiiiiii e 16

DErbY JDBC AlIVET....cciiiiiiiiie ettt s e 17

Derby JDBC database connection URL..........ccoccuviiiiiiiiiiiiiiiiiiee e 17

DEIDY SYSEIM...ciiiiiiiiiiei it 17

A Derby dat@base.ccooiiuiiiiiiiiiiiie e 22
Connecting t0 dat@basesS.ccoiiiuiiiiiiiiii e 25

Working with the database connection URL attributes..........ccccccceeeviiiiciiiinnnnn.n. 28

Using in-memory databases..........ooviiiiiiiiiii e 32
Working with Derby properties. ... 34
PrOPEItIES OVEIVIEW......eviiiieiiiiiiee ettt ettt e e et e e e s sbbeeee e 34

Setting Derby PrOPErtiES........coieiiiiiiiieiiiiiie et 35

PropertieS CaSE STUAY.......ccoiiiiiiiiiiiiiiee ettt e e ee e 38
Deploying Derby appliCatiONS......ccooiiiiiiiiiiie e 40
DEPIOYMENT ISSUES...ciiiiiiiiiie ettt e et e e e st e e e e s sbbeeeee e e 40
Embedded deployment application OVEIVIEW...........c.covuuueieiiiiiiiieiiiiiiee e 40

Deploying Derby in an embedded environment...........cccoocvviieiiiiieeenniiieee e 41

Creating Derby databases for read-only USE€.........ccccciiiiiiiiiiiie e, 42
Creating and preparing the database for read-only use.........ccccccccceeeiiiiiiiinnnns 42

Deploying the database on the read-only media..........cccoovveiiciiiiiiiiiiiiee s 42
Transferring read-only databases to archive (jar or zip) files.........ccccooviieennnnn 42

Accessing a read-only database in a zip/jar file........cccoooeeiii 43

Accessing databases within a jar file using the classpath/modulepath............... 44
Databases on read-only media and DatabaseMetaData............ccccccceveeeeiiinnnnnns 44

Loading classes from a database...........cccov i 44

Class 10adiNg OVEIVIEW...........oiiiiiiiiiiaiiiiee ettt 44

Dynamic changes to jar files or to the database jar classpath.............cccccoeoneee. 46

Derby server-side ProgrammMiNg.......c..eee oo iiieeeeeiiiiee et rieee et e e s s sbbe e e e s anbeeeeeenanees 48
Programming database-side JDBC rOULINES.......coccuuiiiiiiiiiiiieiiieee e 48
Database-side JDBC routines and nested CONNECLIONS...........cccuveveerniiieeeennnne. 48

Version 10.15 Derby Developer's Guide

Database-side JDBC routines using non-nested connections..........cccccccceeeeeeas 49
Database-side JDBC routines and SQLEXCEPLIONS........ccevveeeeeiiiiiiiiiiiiiiieeeeeeenn, 49
User-defined SQLEXCEPLONS.uuuiiiiiiiiieeeiie it e e e e e e e e e e sssrairerre e e e e e e e e e e 50
Programming trigger aCtiONS........ccooiiiiiiiiiiiie e e s 50
TrIQQEr ACtION OVEIVIEW......cciiiiiiiiiiiieee e e e e e s e e e e e e e e e s s areeeeeaeeeeeeanns 50
Performing referential aCtionS.............oooviiiiiiiiiiiiicee e 51
Accessing before and after rOWS...........eevviveeiiiiiiicie e 51
Examples Of trigger aCtiONS..........ueiiiiiieeiiiiiiiciiee e e e e 51
Triggers and EXCEPLIONS.uuuuiiiieieeeeie e it e e e e e e e s e s e e e e e e e e e e e s e e aanreraaeeeees 52
Programming Derby-style table functions..........ccccoveeii e, 52
Overview of Derby-style table functions.............ccccciiiiieiiee e, 52
Example Derby-style table fUNCiON..............oooiiiiiiiiec e 54
Writing restricted table funCLioNS.............cccciiiiii e 55
Writing context-aware table funCtions............ccccvviiiiiiie e, 57
Optimizer support for Derby-style table functions.............ccccccveiieiiiciiee, 62
Programming user-defined tYyPeS.....ccccuiiiiiiiieii et 66
Programming user-defined aggregates......ccoociveeeeiiiiiiiiiiiieiieecee e 68
Controlling Derby application behavior.........ccccooiiiiiiiiiie e 71
The JDBC connection and transaction model.........ccccveiieiiiiiiiie e 71
1070] 1] a =T 1 o] o = T PR PRT 71
QL2107 T 1o T PRSP 72
Result set and CUrsor MeChaniSMS........ciiiiiiiiiii e 75
Simple non-updatable result SetS............ooociiiiiiiiiee e 76
Updatable reSUIL SELS.....uuuiiiiiieie e 76
Result sets and auto-COMIMIL..........cooiiiiiiiie e 81
SCrollable reSUIt SELS.........oiiiiiiiiiee e 81
HoIdable reSUIt SES.........eiiiiiiii e e 82
Locking, concurrency, and isolation.........cccccevveveeeeii i 83
Isolation levels and CONCUITENCY...........cooccuiiiiieiei e e e e 83
Configuring iSolation 1EVEIS............cociiiiiiiee e 86
LOCK QranUIATILY........c..uueiiiiieieeie e e e e e e e e s e eeeeaeae s 86
Types and scope of locks in Derby SYStEMS.........ccccuvviiiiiieeeeee e 87

(D= T=To | Lo Lot 2C S PSSR 90
Working with multiple connections to a single database................cccccvvveeeenen.n. 95
Deployment options and threading and connection modes..........ccccccvveeeeeiiinnnns 95
Multi-user database ACCESS.........uuiiiiiiiiiiie it 96
Multiple connections from a single application............cccccoooveiiiiiiiieieeeee e 96
Working with multiple threads sharing a single connection.........ccccccccceeeeiiins 96
Pitfalls of sharing a connection among threads..............cccoocveeieie i, 96
Multi-thread programming tiPS........uuueeiiiieeeeiiiiiir e e e e e e e 97
Example of threads sharing a statement.............ccccoviieie e, 98
Working with database threads in an embedded environment...........cccccceeeenn. 98
Working with Derby SQLEXxceptions in an application...........ccccccvevveveeennniicnnns 99
Information provided in SQL EXCEPLIONS......cccivvieiiiiiiiiiieeece e 99
Using Derby as a Java EE reSOUIrCe Manager.........cccccuvirrririieeeeeesiesiiininnneeeeaeaeeesaeanns 101
Classes that pertain t0 reSOUrCe MaNAQErS.......ccccuivrrireieeeeeeeeeiiiinirrrrrrraeaea e 101
Getting @ Dat@SOUICE......cccccieiiiiiiice e e e e e e e e e e e e e e e e nanraereees 102
Shutting down or creating a database..........cccceeveiiee i 102
Developing tools and using Derby with an IDE...........ccccviiiiiiiiiiie e 104
Offering connection choices t0 the USer......cccocvviiiiiiiiiiii e 104
The DriverPropertylnfo ArTay.......ccuuuueieeiiee e e e e e e 104
Using Derby With IDES.......ccccuiiiiiiiciice ettt e e e e e e e e s 105
IDES and mMUItIPIE JVIMS.........ooiiiiieeeeee et a e e e 105

LT I T 1= SRS STR 107

Version 10.15 Derby Developer's Guide

Retrieving the database name and connection URL.............cccccviiiieiieeeee i, 107
Supplying a parameter ONlY ONCE.......cooi ittt 107
Defining an identity COIUMN ... 107

Using third-party t00IS. ... 107
Tricks Of the VALUES ClaUSE......cciiiiiiiiie ittt 108
MUIIPIE FOWS. ... ittt e e e e e e e e e e e e e e e e s e areeeeaeaeeesaeanns 108

Mapping column values to return ValUEs...........ccuvveeveeeeeeiiiiiiiiieieeee e e e e 108

Creating €MPLY QUEIIES.uuiiiiiieieeeeee e s eceitte e e e e e e e e e s e s e e e e e e e e e e s aeennnrnnaeees 108

(o Yot 1 14T o Yo [=T d o)V PR 109
SQL parser support for UNiCOAE........cccuuiiiiiiiiiiie e 109
Character-based collation in Derby........cccoooiiiiiiiiiiii e 109

How collation WOrks in DerbY.........ceeiieieiiiiiiiiiieeicee e 109
Locale-based COllatioN.............ooiiiiiiiiiiie e 109

Database connection URL attributes that control collation.................ccccceeeeneee. 110

Examples of case-sensitive and case-insensitive string sorting........................ 111
Differences between LIKE and equal (=) comparisons............ccccccvvvveeeeeeeeennn. 112

Other components with locale SUPPOIt.......cccviiiiiiiiiiee e 112
MESSAQES [IDIArIES. ... 112
(DT o) VA= Ta Yo] =g T K= o £ USSR 114
XML data types and OPEratorS......ccccuiiiiiciiiiiiiiieee e e e e s e s st e e e e e e e e e e s s eanrraaeeeee s 115

LI 10 L= 4=V S PRSPPI 117

Derby Developer's Guide
Apache Software FoundationDerby Developer's GuideApache Derby

Derby Developer's Guide

Copyright

Apache Derby %

Copyright 2004-2020 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Developer's Guide
License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

6

Derby Developer's Guide

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

Grant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a

per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

Obj ect form

Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

Derby Developer's Guide

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state

ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable | aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,

def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERVS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

Derby Developer's Guide
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

Derby Developer's Guide

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this guide

This guide explains how to use the core Derby technology and is for developers building
Derby applications.

It describes basic Derby concepts, such as how you create and access Derby databases
through JDBC routines and how you can deploy Derby applications.

When an application embeds Derby, application users take on the role of database
administrator and must maintain the integrity of the database. See "Part Two: Derby
Administration Guide" in the Derby Server and Administration Guide for information on
administrative tasks such as backing up and restoring databases. In particular, see the
topic "Maintaining database integrity" for information on preventing database corruption.
You will need to make this information available to users of your application.

Audience
This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized
This document includes the following sections.
* After installing

Explains the installation layout.
« Upgrades

Explains how to upgrade a database created with a previous version of Derby.
» JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, starting Derby, and working with Derby properties.
» Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.
» Derby server-side programming

Describes how to program database-side JDBC routines, triggers, and table
functions.
» Controlling Derby application behavior

JDBC, cursors, locking and isolation levels, and multiple connections.
« Using Derby as a Java EE resource manager

10

http://db.apache.org/derby/

Derby Developer's Guide

Information for programmers developing back-end components in a J2EE system.
« Developing tools and using Derby with an IDE

Tips for tool designers.
e SQL tips

Insiders' tricks of the trade for using SQL.
¢ Localizing Derby

An overview of database localization.
¢ Derby and standards

Describes those parts of Derby that are non-standard or not typical for a database
system.

11

Derby Developer's Guide

After installing

This section provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the i ndex. ht m file at the top level of the Derby distribution for pointers to
reference and tutorial information about Derby. See the Release Notes for information on
platform support, changes that may affect your existing applications, defect information,
and recent documentation updates. See Getting Started with Derby for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath/modulepath.

The installation directory
You may install the Derby software in a directory of your choice.
See the i ndex. ht ml file for pointers to information on Derby.

The distribution includes setup scripts that use an environment variable called
DERBY_HOME. The variable's value is set to the Derby base directory.

C. >echo Y©OERBY_HOVE%
C: \ DERBY_HOVE

If you want to set your own environment, Getting Started with Derby instructs you on
setting its value to the directory in which you installed the Derby software.

The distribution for Derby contains all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

 index.html in the top-level directory is the top page for the on-line documentation.

* RELEASE-NOTES.html, in the top-level Derby base directory, contains important
last-minute information. Read it first.

« /bin contains utilities and scripts for running Derby.

» /demo contains some sample applications, useful scripts, and prebuilt databases.

 /databases includes prebuilt sample databases.
» /programs includes sample applications.

 /docs contains the on-line documentation (including this document).

« /javadoc contains the documented APIs for the public classes and interfaces.
Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

« /lib contains the Derby libraries.

Batch files and shell scripts

The /bin directory contains scripts for running some of the Derby tools and utilities. To
customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on
any platform. However, they may require modification in order to run properly on certain
platforms.

Derby and Java Virtual Machines (JVMs)

12

Derby Developer's Guide

Derby is a database engine written completely in the Java programming language; it will
run in any JVM that is version 9 or higher.

Derby libraries and classpath/modulepath

Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath/modulepath on your development machine to include the appropriate
libraries.

Getting Started with Derby explains how to set the classpath/modulepath in a
development environment.

UNIX-specific issues

This section discusses Derby issues specifically related to UNIX platforms.

Configuring file descriptors

Scripts

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time.

If the default is a low number, such as 64, you might run into unexpected IOExceptions
(wrapped in SQLExcept i ons). If your operating system lets you configure the number of
file descriptors, set this number to a higher value.

Your installation contains executable script files that simplify invoking the Derby tools.
On UNIX systems, these files might need to have their default protections set to include
execute privilege.

A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

13

Derby Developer's Guide

Upgrades

To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

* marks the database as upgraded to the current release (Version 10.15).
« allows use of new features.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade

Upgrading your database occurs the first time the new Derby software connects to the
old database.

Before you connect to the database using the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Derby Server and Administration Guide.

Update your CLASSPATH or modulepath with the latest jar files.

3. Make sure that there are no older versions of the Derby jar files in your
CLASSPATH or modulepath. You can determine if you have multiple versions of
Derby in your CLASSPATH or modulepath by using the sysinfo tool.

N

To use the sysi nf o tool, execute the following command:

java org. apache. derby. t ool s. sysi nfo

The sysi nf o tool uses information found in the Derby jar files to determine the
version of any Derby jar in your CLASSPATH or modulepath. Be sure that you have
only one version of the Derby jar files specified there.

Upgrading a database

To upgrade a database, you must explicitly request an upgrade the first time you connect
to the database with the new version of Derby.

Ensure that you complete the prerequisite steps before you upgrade:
» Back up your database before you upgrade.
» Ensure that only the new Derby jar files are in your CLASSPATH or modulepath.

When you upgrade the database, you can perform a full upgrade or soft upgrade:

A full upgrade is a complete upgrade of the Derby database. When you perform a
full upgrade, you cannot connect to the database with an older version of Derby and
you cannot revert back to the previous version. Elsewhere in the documentation,
when the term "upgrade” is used without any qualification, it means a full upgrade.

A soft upgrade allows you to run a newer version of Derby against an existing
database without having to fully upgrade the database. This means that you
can continue to run an older version of Derby against the database. However, if
you perform a soft upgrade, certain features will not be available to you until you
perform a full upgrade. Specifically, new features that affect the structure of a

14

Derby Developer's Guide

database are not available with a soft upgrade. For a list of the new features in a
release, see the Release Notes for that release.

To upgrade the database, select the type of upgrade that you want to perform. The
following table shows the upgrade types. In both examples, sanpl e is a database
from a previous version of Derby.

Table 1. Upgrade types

Type of Upgrade

Action

Full upgrade

Connect to the database using the upgr ade=t r ue
database connection URL attribute. For example:

j dbc: der by: sanpl e; upgr ade=t r ue

See "upgrade=true attribute" in the Derby Reference Manual
for more information about this attribute.

Soft upgrade

Connect to the database. For example:

connect 'jdbc: derby: sanpl e

15

Derby Developer's Guide

JDBC applications and Derby basics

This section describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview

Derby application developers use the Java Database Connectivity (JDBC) API, the
application programming interface that makes it possible to access relational databases
from Java programs.

The JDBC API is part of the Java Platform, Standard Edition and is not specific to Derby.
It consists of the java.sgl and javax.sql packages, which contain classes and interfaces
that make it possible to access databases (from a number of different vendors, not just
Derby) from a Java application.

To develop Derby applications successfully, you will need to learn the JDBC API. This
section does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This section gives you the details
of how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of the
JDBC API in the Derby Reference Manual.

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types.

SQL is standardized by ANSI and ISO; Derby supports entry-level SQL as well as some
higher-level features. Entry-level SQL is a subset of the full SQL specified by ANSI and
ISO that is supported by nearly all major DBMSs today.

This section does not teach you SQL. You will find reference information about the
particulars of Derby's implementation of SQL in the Derby Reference Manual.

Derby implements the JDBC API so as to allow Derby to serve as a resource manager in
a Java EE compliant system.

When an application embeds Derby, application users take on the role of database
administrator and must maintain the integrity of the database. See "Part Two: Derby
Administration Guide" in the Derby Server and Administration Guide for information on
administrative tasks such as backing up and restoring databases. In particular, see the
topic "Maintaining database integrity" for information on preventing database corruption.
You will need to make this information available to your users.

Derby embedded basics
This section explains how to use and configure Derby in an embedded environment.

Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

16

Derby Developer's Guide

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database.

In an embedded environment, the embedded driver is initially loaded and registered
when the java.sql.DriverManager class is initialized. That typically happens on the first
call to a DriverManager method such as DriverManager.getConnection, as described in
Derby JDBC database connection URL. Loading the driver also starts Derby.

The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver.

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver
interface" in the Derby Reference Manual.

If your application shuts down Derby or calls the DriverManager.deregisterDriver method,
and you then want to reload the driver, call the Class.forName().newlnstance() method.
See Shutting down the system for more information.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object.

The standard way to obtain a Connection object is to call the method
DriverManager.getConnection, which takes a String containing a connection URL
(uniform resource locator). A JDBC connection URL provides a way of identifying a
database. It also allows you to perform a number of high-level tasks, such as creating a
database or shutting down the system.

The following example shows the use of the connection URL:

Connection conn = DriverManager. get Connection("j dbc: der by: sanpl e");

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment. See
"Accessing the Network Server by using the network client driver" in the Derby Server
and Administration Guide for more information.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

« You can specify the name of the database you want to connect to.
* You can specify a number of attributes and values that allow you to accomplish
tasks.

For more information about what you can specify with the Derby connection URL, see
Connecting to databases. For details on the connection URL syntax, see "Syntax of
database connection URLs for applications with embedded databases" in the Derby
Reference Manual. For detailed reference information on connection URL attributes and
values, see "Setting attributes for the database connection URL" in the Derby Reference
Manual.

Derby system
A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a

17

Derby Developer's Guide

system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties. This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the Derby system and the system directory is an essential part of a running
database or databases. Understanding the Derby system is essential to successful
development and deployment of Derby applications. As the following figure shows, Derby
databases live in a system, which includes system-wide properties, an error log, and one
or more databases.

Figure 1. Derby system

B

* derby.system.home

(value of this system variable
Darty tells Derby the name
of your system directory)

|

Accounting DB Sales DB D

derby.log

The system directory can also contain an error log file called derby.log (see The error
log).

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

When you use the embedded driver, Derby database files and log files normally have
whatever default permissions you specify for your file system. However, you can enhance
security by restricting file access to the user who creates the database. To do this, set
the system property derby.storage.useDefaultFilePermissions to false. See the Derby
Reference Manual for details.

Note: In-memory databases do not appear in the system directory.
One Derby instance for each Java Virtual Machine (JVM)

You could potentially have two instances of a Derby system running on the same
machine at the same time. Each instance must run in a different Java Virtual Machine
(IVM).

18

Derby Developer's Guide

If you use the embedded driver, two separate instances of Derby cannot access the
same database. If a Derby instance attempts to access a running database, an error
message appears, and a stack trace appears in the derby.log file. If you want more than
one Derby instance to be able to access the same database, you can use the Network
Server.

If a Derby instance uses the in-memory database capability for its database connection,
the database exists only within the JVM of that Derby instance. Another Derby instance
could refer to the same database name, but it would not be referring to the same actual
database, and no error would result.

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

You can also configure your system to automatically boot all databases in the system
when it starts up; see "derby.system.bootAll" in the Derby Reference Manual. Because
of the time needed to boot a database, the number of databases in the system directory
affects startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, a message is added to the log file. The message includes
the Derby version that the database was booted with, along with information about the
Java version, the user's working directory, and the location of the Derby system directory,
if the user specified it using the derby.system.home property. If derby.system.home was
not specified, its value is reported as null, as in the following example:

Thu Sep 13 09:52: 15 EDT 2012:

Booti ng Derby version The Apache Software Foundation - Apache Derby
- 10.10.0.0 - (1384314): instance a816c00e-0139- bf e6- bf f 8- 000000a155b8
on database directory C \sanpledb with class | oader
sun. mi sc. Launcher $AppCl assLoader @931f 5
Loaded fromfile: C\db-derby-10.10.0.0-bin\Iib\derby.jar
j ava. vendor =Cr acl e Cor porati on
java.runtine.version=1.7.0_07-bll
user.dir=C\
os. nane=W ndows XP
0s. ar ch=x86
0s.version=5.1
der by. syst em home=nul |
Dat abase C ass Loader started - derby. database. cl asspat h=""

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.

Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the Java Virtual
Machine (JVM) running, Derby continues to run and is available for database
connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=t rue");

Shutdown commands always raise SQLEXxceptions.

19

Derby Developer's Guide
When a Derby system shuts down, a message goes to the log file:

Thu Sep 13 09:53:21 EDT 2012:

Shutting down instance a816c00e- 0139- bf e6- bf f 8- 000000a155b8 on
dat abase directory C: \sanpledb with class | oader

sun. m sc. Launcher $AppCl assLoader @931f 5

If you are running with a security manager, you must grant Derby permission to
deregister the embedded driver in order to fully shut down the system. See "Configuring
Java security" in the Derby Security Guide for details.

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart it in
the same JVM session. To restart Derby successfully, the application needs to reload
org.apache.derby.jdbc.EmbeddedDriver explicitly, as follows:

Cl ass. for Nane(" or g. apache. der by. j dbc. EnbeddedDri ver") . newl nst ance() ;

This is an exception to the rule that you do not need to load the driver explicitly when
starting Derby.

The JDBC specification does not recommend calling newl nst ance() , but adding a
new nst ance() call guarantees that Derby will be booted on any JVM.

Note: If your application will need to restart Derby, you can add the attribute
deregister=false to the connection URL to avoid having to reload the embedded driver:

Dri ver Manager . get Connecti on("j dbc: der by: ; shut down=t r ue; der egi st er =f al se") ;

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database. You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called derby.system.home.

If you do not specify the system directory when starting up Derby, the current directory
becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system
directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See the Derby Reference Manual for more
information on this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages to the error log. Typically, Derby writes this information
to a file called derby.log in the system directory.

Alternatively, you can have Derby send messages to a stream, using the
derby.stream.error.method or derby.stream.error.field property, or to a different file,

using the derby.stream.error.file property. If you use any of these properties, the property
setting will appear in the log.

20

Derby Developer's Guide

By default, Derby overwrites derby.log when you start the system. You can configure
Derby to append to the log with the derby.infolog.append property.

For information on setting all of these properties, see the Derby Reference Manual.
derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters that are valid for the entire system.

The derby.properties file is not automatically created. If you want to set Derby properties
with this file, you need to create the file yourself. The derby.properties file should be in
the format created by the java.util.Properties.save method. For more information about
properties and the derby.properties file, see Working with Derby properties and the Derby
Reference Manual.

Double-booting system behavior

Derby prevents two instances of itself from booting the same database by using a file
called db.Ick inside the database directory.

If a second instance of Derby attempts to boot an already running database, the following
error messages appear:

ERROR XJ040: Failed to start database 'firstdb', see the next exception
for details.

ERROR XSDB6: Anot her instance of Derby nmay have al ready booted the

dat abase /hone/ nysel f/ DERBYTUTOR/ fi r st db.

In addition, a stack trace appears in the derby.log file. For help diagnosing a double boot
problem, use the derby.stream.error.logBootTrace property to obtain information about
both successful and unsuccessful boot attempts. The property is described in the Derby
Reference Manual.

If Derby is not able to create the db.Ick file when booting a database, the database will

be booted in read-only mode. This may happen due to lack of disk space or access rights
for the database directory. The boot message in the derby.log will state that the database
has been booted in READ ONLY mode. See also Creating Derby databases for read-only
use.

If you need to access a single database from more than one Java Virtual Machine
(JVM), you will need to put a server solution in place. You can allow applications from
multiple JVMs that need to access that database to connect to the server. The Derby
Network Server is provided as a server solution. For basic information on starting and
using the Network Server, see Getting Started with Derby. See the Derby Server and
Administration Guide for more information on the Network Server.

Recommended practices

When developing Derby applications, create a single directory to hold your database or
databases, preferably in a secured branch of the file system such as one owned by the
account which boots the JVM.

Give this directory a unigue name, to help you remember that:

« All databases exist within a system.

« System-wide properties affect the entire system, and persistent system-wide
properties live in the system directory.

* You can boot all the databases in the system, and the boot-up times of all
databases affect the performance of the system.

* You can preboot databases only if they are within the system. (Databases do not
necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

21

Derby Developer's Guide

« Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

< Only one instance of Derby can run in a JVM at a single time.

» The error log is located inside the system directory.

A Derby database

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory

A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.

Note: An in-memory database does not use the file system, but the size limits listed in
the table later in this topic still apply. For some limits, the maximum value is determined
by the available main memory instead of the available disk space and file system
limitations.

A database directory contains the following, as shown in the following figure.
« log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).
» segO directory

Contains one file for each user table, system table, and index (known as
conglomerates).
* service.properties file

A text file with internal configuration information.
 tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

« jar directory

(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file.

The following figure shows the files and directories in the Derby database directories that
are used by the Derby software.

Figure 2. An example of a Derby database directory and file structure

22

Derby Developer's Guide

Sales DB 2

jar
service.properties

Derby imposes relatively few limitations on the number and size of databases and
database objects. The following table shows some size limitations of Derby databases
and database objects.

Table 2. Size limits for Derby database objects

Type of Object Limit

Tables in each database java.lang.Long.MAX_VALUE

Some operating systems impose a limit to the
number of files allowed in a single directory.

Indexes in each table 32,767 or storage

Columns in each table 1,012

Number of columns on an index | 16

key

Rows in each table No limit.

Size of table No limit. Some operating systems impose a limit on
the size of a single file.

Size of row No limit. Rows can span pages. Rows cannot span

tables so some operating systems impose a limit on
the size of a single file, which results in limiting the
size of a table and size of a row in that table.

For a complete list of restrictions on Derby databases and database objects, see the
Derby Reference Manual.

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL.

If you use an in-memory database, you can use a connection URL attribute to drop it. For
a file system database, however, there is no drop attribute. To drop a database on the file
system, delete the database directory with operating system commands. The database
must not be booted when you remove a database.

To back up a database, you can use the online backup utility. For information on this
utility, see the Derby Server and Administration Guide.

23

Derby Developer's Guide

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Derby Server and Administration Guide.

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running.

Storage and recovery

A Derby database (unless it is an in-memory database) provides persistent storage and
recovery. Derby ensures that all committed transactions are durable, even if the system
fails, through the use of a database transaction log.

Whereas inserts, updates, and deletes may be cached before being written to disk, log
entries tracking all those changes are never cached but always forced to disk when a
transaction commits. If the system or operating system fails unexpectedly, when Derby
next starts up it can use the log to perform recovery, recovering the "lost" transactions
from the log and rolling back uncommitted transactions. Recovery ensures that all
committed transactions at the time the system failed are applied to the database, and all
transactions that were active are rolled back. Thus the databases are left in a consistent,
valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

Log on separate device

You can put a database's log on a separate device when you create it.

For more information, see the Derby Server and Administration Guide.

Database pages

Derby tables and indexes, known as conglomerates, consist of two or more pages.

A page is a unit of storage whose size is configurable on a system-wide, database-wide,
or conglomerate-specific basis. By default, a conglomerate grows one page at a time
until eight pages of user data (or nine pages of total disk use, which includes one page
of internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in the Derby Reference Manual.) After that, it grows eight
pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.

Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property.

For more information, see Scope of properties and Setting database-wide properties.

24

Derby Developer's Guide
Derby database limitations

Derby databases have a few limitations.
Indexes

Indexes are not supported for columns defined on CLOB, BLOB, LONG VARCHAR,
XML, and user-defined data types.

If the length of the key columns in an index is larger than half the page size of the index,

creating an index on those key columns for the table fails. For existing indexes, an insert
of new rows for which the key columns are larger than half of the index page size causes
the insert to fail.

Avoid creating indexes on long columns. Create indexes on small columns that provide
a quick look-up to larger, unwieldy data in the row. You might not see performance
improvements if you index long columns. For information about indexes, see Tuning
Derby.

System shutdowns
The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of | OExcept i on occurs in the der by. | og file when
the system runs out of space. If the system has no more disk space to append to the
der by. | og file, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call.

For details on the syntax of the connection URL, see "Syntax of database connection
URLSs for applications with embedded databases" in the Derby Reference Manual.

You specify a path to the database within this connection URL.
Connecting to databases within the system

The standard way to access databases in the file system is by specifying the path name
of the database. The path name can be either an absolute path name or a path name
relative to the system directory. In a client/server environment, this path name is always
on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system
directory, just specify the base name of the database on the connection URL. For
example, if your system directory contains a database called myDB, you can connect to
that database with the following connection URL:

j dbc: der by: myDB
The full method call within a Java program would be:
Connecti on conn = Driver Manager. get Connection("j dbc: derby: nyDB") ;

Connecting to databases outside the system directory

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system.

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

25

Derby Developer's Guide
Two examples:

jdbc: derby:../otherDirectory/ nyDB
jdbc: derby: c:/otherDirectory/ nyDB

Note: Once connected, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and no other instance of Derby should access that database. It
is recommended that you connect to databases only in the system directory.
Conventions for specifying the database path name

When you access databases from the file system (instead of from the classpath or a jar
file), any path name that is not absolute is interpreted as relative to the system directory.

The path name must do one of the following:

» Refer to a previously created Derby database
» Specify the create=true attribute

The path separator in the path name is a forward slash (/), even in Windows path
names. The path name cannot contain a colon (:), except for the colon after the
drive name in a Windows path name. See "Syntax of database connection URLs for
applications with embedded databases" in the Derby Reference Manual for the full
syntax.

You can specify only databases that are local to the machine on which the JVM

is running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database path name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path name and its relative path name are connections to the same
database. Within Derby, the name of the database is defined by the canonical path of its
directory from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

Special database access

You can also access databases from the classpath/modulepath or from a jar file (in the
classpath/modulepath or not) as read-only databases.

You can create in-memory databases for use in testing and development and for
processing temporary or reproducible data. See Using in-memory databases for details.

Accessing databases from the classpath/modulepath:

In most cases, you access databases from the file system. However, it is also possible to
access databases from the classpath/modulepath. The databases can be archived into a
jar or zip file or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, use the classpath
subsubprotocol.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

j dbc: der by: cl asspat h: sanpl e

26

Derby Developer's Guide

If only C:\derby were in the classpath/modulepath, you could access sample (read-only)
like this:

j dbc: der by: cl asspat h: denp/ dat abases/ sanpl e
Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file does not have to be on the
classpath/modulepath.

Note: All such databases are read-only.

For example, suppose you have archived the database jarDB1 into a file called jarl.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with
the following connection URL

jdbc: derby: cl asspat h: j ar DB1

To access a database in a jar file that is not on the classpath/modulepath, use the jar
subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.
This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocol, like this:

jdbc:derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file.

Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment.

For reference information about connection URLSs, see "Syntax of database connection
URLSs for applications with embedded databases" in the Derby Reference Manual or
"Accessing the Network Server by using the network client driver" in the Derby Server
and Administration Guide.

« jdbc:derby:dbl

Open a connection to the database dbl. dbl is a directory located in the system
directory.
« jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.
« jdbc:derby:/reference/phrases/french

Open a connection to the database /reference/phrases/french.

On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C.
« jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.
« jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.
« jdbc:derby:support/bugsdb;create=true

27

Derby Developer's Guide

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.
« jdbc:derby:sample;shutdown=true

Shut down the sample database. (Authentication is not enabled, so no user
credentials are required.)
« jdbc:derby:memory:myDB

Access the in-memory database named myDB. The syntax for a client connection
URL is different; see Using in-memory databases for details.
« jdbc:derby:classpath:myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database.
« jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.
« jdbc:derby:directory:myDB

Access myDB, which is in the system directory.

Working with the database connection URL attributes
You specify attributes on the Derby connection URL.

The examples in this section use the syntax of the connection URL for use in an
embedded environment. You can also specify these same attributes and values on the
client connection URL if you are using Derby as a database server. For more information,
see the Derby Server and Administration Guide.

You can also set these attributes by passing a Properties object along with a connection
URL to Dri ver Manager . get Connect i on when obtaining a connection; see
Specifying attributes in a properties object. If you specify any attributes both on the
connection URL and in a Properties object, the attributes on the connection URL override
the attributes in the Properties object.

All attributes are optional.

For more information on working with connection URL attributes, see the following:
« "Configuring database encryption" in the Derby Security Guide for information on
database encryption
« Derby Server and Administration Guide for information on tracing network clients,
replicating databases, restoring databases from backup, and logging on separate
devices

For complete information about the attributes, see "Setting attributes for the database
connection URL" in the Derby Reference Manual.

For detailed information about the connection URL syntax, see "Syntax of database
connection URLSs for applications with embedded databases" in the Derby Reference
Manual.

Using the databaseName attribute

You can use a dat abaseNane attribute on a database connection URL to specify the
path name of the database to which you want to connect.

j dbc: der by: ; dat abaseNane=dat abaseNane

You can access read-only databases in jar or zip files by specifying j ar as the
subsubprotocol, like this:

28

Derby Developer's Guide
jdbc: derby: jar: (pat hToAr chi ve) dat abasePat hW't hi nAr chi ve

Or, if the jar or zip file has been included in the classpath, like this:

j dbc: der by: cl asspat h: dat abasePat hW't hi nAr chi ve

The path separator in the path name is a forward slash (/), even in Windows path
names. The path name cannot contain a colon (:), except for the colon after the drive
name in a Windows path name. See Conventions for specifying the database path name
for more information.

Shutting down Derby or an individual database

Applications in an embedded environment shut down the Derby system by specifying
the shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you do not ordinarily specify any other attribute.

j dbc: der by: ; shut down=t r ue

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

If you are running with a security manager on JDK 8 or higher, you must grant Derby
permission to deregister the embedded driver in order to fully shut down the system. See
"Configuring Java security" in the Derby Security Guide for detalils.

If you have enabled user authentication at the system level, you will need to specify
credentials (that is, username and password) in order to shut down a Derby system, and
the supplied username and password must also be defined at the system level.

You can also shut down an individual database if you specify the databaseName.
You can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

/1 shutting down a database from your application
Dri ver Manager . get Connect i on(
"j dbc: der by: sanpl e; shut down=t rue") ;

If user authentication and SQL authorization are both enabled, only the database owner
can shut down the database. (See the Derby Security Guide for details on authentication
and authorization.)

/1 shutting down an aut henticated dat abase as dat abase owner
Dri ver Manager . get Connect i on(

"j dbc: der by: secur esanpl e; user =j oeowner ; passwor d=secr et ; shut down=t rue") ;

If you previously called the java.sql.DriverManager.setLoginTimeout method to enable
a login timeout, a shutdown of Derby or of an individual database can fail under
circumstances like the following:

» Network problems which slow down LDAP authentication

» Heavily loaded databases which take a long time time to quiesce
Attention: It is good practice to close existing connections before shutting down the
system or database. Connections created before the shutdown will not be usable after
shutdown is performed. Attempting to access connections after shutdown may cause
errors including instances of Nul | Poi nt er Except i on or protocol violations.

Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true.

29

Derby Developer's Guide

Derby creates a new database inside a new subdirectory in the system directory. This
system directory has the same name as the new database. If you specify a partial path, it
is relative to the system directory. You can also specify an absolute path.

j dbc: der by: dat abaseNan®; cr eat e=t r ue
For more details about create=true, see "create=true" in the Derby Reference Manual.
Providing a user name and password

When user authentication is enabled, an application must provide a user
name and password. One way to do this is to use the user=userName and
password=userPassword connection URL attributes.

j dbc: der by: sanpl e; user=jil |l ; passwor d=t oFet chAPai |
Creating a database with locale-based collation

By default, Derby uses Unicode codepoint collation. However, you can specify
locale-based collation when you create the database.

You can use the collation=collation and territory=Il_CC connection URL attributes to
specify locale-based collation (see the Derby Reference Manual for details on these
attributes). This type of collation applies only to user-defined tables. The system tables
use the Unicode codepoint collation.

Restriction: The collation=collation and territory=Il_CC attributes can be specified only
when you create a database. You cannot specify these attributes on an existing database
or when you upgrade a database.

To create a database with locale-based collation, specify the language and country
codes for the territory=Il_CC attribute, and the TERRITORY_BASED value for the
collation=collation attribute, when you create the database.

For example, you could use the following connection URL:

j dbc: der by: Mexi canDB; create=true; territory=es_MX; col | ati on=TERRI TORY_BASED

See the documentation of the territory=Il_CC and collation=collation attributes in the
Derby Reference Manual for details on these attributes. See Creating a case-insensitive
database for information on making the database use case-insensensitive searches.

Creating a case-insensitive database

When you create a database using locale-based collation, the collation=collation
value TERRITORY_BASED uses the default collation strength for the locale, usually
TERTIARY, which will consider character case significant in searches and comparisons.

To make the database use case-insensitive searches, specify an explicit strength lower
than TERTIARY with the collation=collation attribute. The strength name is appended to
TERRITORY_BASED with a colon to separate them.

For example, you could specify the following connection URL:
j dbc: der by: Swedi shDB; create=true;territory=sv_SE; col | ati on=TERRI TORY_BASED: PRI MARY

With strength PRIMARY, the characters 'A' and 'a’ will be considered equal, as well
as 'a’ (‘a' with a grave accent). (This behavior is commonly the default with many
other databases.) To make searches respect differences in accent, use strength
SECONDARY.

The exact interpretation of the strength part of the attribute depends upon the locale.

30

Derby Developer's Guide

For more information, see Creating a database with locale-based collation and the
documentation of the territory=Il_CC and collation=collation attributes in the Derby
Reference Manual.

Creating a customized collator

You may need to define a collation order different from that of the strengths provided by
the collation=collation attribute.

To define a new collation order, follow these steps.

1. Create a class that extends the java.text.spi.CollatorProvider class and that returns
a collator that orders strings the way you want it to.

2. Create a text file named META-INF/services/java.text.spi.CollatorProvider that
contains one line with the name of your collator provider class.

3. Put the compiled class file and the text file in a jar file that you drop into your JRE's
lib/ext directory or in one of the directories specified by the java.ext.dirs property.

For example, suppose you want to define a collation order to make Greek characters sort
near their Latin equivalents (‘#' near 'a’, "#' near 'b', and so on). You could define another
locale with a CollatorProvider that returns a java.text.RuleBasedCollator with ever rules
you want. See the APl documentation for the RuleBasedCollator class for details about
how you specify rules. In its simplest form, a set of rules might look like "a, A < b, B <
¢, C', which means more or less that 'a’ and 'A’ should be sorted before 'b' and 'B', which
should be sorted before 'c' and 'C'. So to get the Greek characters sorted near similar
Latin characters, define a CollatorProvider that looks like this one:

public class MyCol | at or Provi der extends Col | at or Provi der {
public Local e[] getAvail abl eLocal es() {
return new Local e[] {
new Local e("en", "US", "greek")
IE

}

public Collator getlnstance(Local e |ocale) {
StringBuilder rules = new StringBuilder();
/1 al pha should go between a and b
rul es. append("< a, A < \u03b1,\u0391 < b, B");
/'l beta should go between b and c
rul es. append("& b, B < \u03b2,\u0392 < ¢, C");
/! add nore rules here

try {
return new Rul eBasedCol | ator(rules.toString());

} catch (ParseException pe) {
t hrow new Error(pe);
}

}

Again, put the compiled class and the META-INF/services/java.text.spi.CollatorProvider
file in a jar file, and start the i j tool with the - Dj ava. ext . di r s=. option in the
directory where the jar file is located. Create a database that uses the new locale and
insert some data with both Greek and Latin characters:

i j> connect
"jdbc: derby: GeekDB;territory=en_US greek;coll ati on=TERRI TORY_BASED,; cr eat e=true';
ij>create table t (x varchar(12));
0 rows inserted/ updated/del et ed
ij>insert intot values 'a', 'b', 'c', '#, "#;
5 rows inserted/ updated/ del et ed
ij>select * fromt order by x;
X

31

Derby Developer's Guide

5 rows sel ected

The ordering is just as you wanted it, with the Greek characters between the Latin ones,
and not at the end where they would normally be located.

One word of caution: If, after you have created a database, you update your custom
CollatorProvider so that the ordering is changed, you will need to recreate the database.
You must do this because the indexes in the database are ordered, and you may see
strange results if the indexes are ordered with a different collator from the one your
database is currently using.

Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes
as properties in a Pr opert i es object that you pass as a second argument to the
Dri ver Manager . get Connect i on method.

For example, to set the user name and password:

Properties p = new Properties();

p. set Property("user", "sa");
p. set Property("password", "manager");
p. setProperty("create", "true");

Connection conn = DriverManager. get Connecti on(
"j dbc: der by: mynewDB", p);

Note: If you specify any attributes both on the connection URL and in a Properties
object, the attributes on the connection URL override the attributes in the Properties
object.

Using in-memory databases

For testing and developing applications, or for processing transient or reproducible data,
you can use Derby's in-memory database facility.

An in-memory database resides completely in main memory, not in the file system. It is
useful for testing and developing applications, when you may want to create and discard
databases that will never be used again. It is also useful when you need to process only
temporary or reproducible data.

If you have the required memory available, you may also benefit from faster processing
(no disk 1/0) and from the simplicity of not having to explicitly delete databases you have
finished with.

Creating an in-memory database

To create an in-memory database, specify menory as the JDBC subsubprotocol. For
example, to create an in-memory database named ny DB using the embedded driver, use
the following connection URL:

j dbc: der by: menory: nyDB; cr eat e=t r ue

For the network client driver, use the following connection URL. Because the client driver
does not understand the nenor y subsubprotocol, you must include it in the database
name:

32

Derby Developer's Guide
jdbc: derby: // nyhost: 1527/ menory: nyDB; cr eat e=t r ue

Be careful to specify a colon (:) after nenory.
Referring to in-memory databases

When you create or refer to an in-memory database, any path that is not absolute is
interpreted as relative to the system directory, just as with file system databases. For
example, if the system directory is C. \ nyder by, the following paths are regarded as
equivalent:

j dbc: der by: menory: db
j dbc: der by: menory: C:\ nyder by\ db

Similarly, Derby treats the following URLs as names for the same in-memory database:

j dbc: der by: menory: / hone/ nynane/ db
j dbc: der by: menory: / hone/ nynane/ . . / nyname/ db

Conventions for specifying the database path name has more information on database
paths.

Using in-memory databases

When you use an in-memory database, you need to make sure to configure the heap
and the Derby page cache size. See "Configure Derby to use an in-memory database" in
Tuning Derby for details.

For examples of how to use an in-memory database, see some of the i j command
examples in the Derby Tools and Utilities Guide (execut e and async, for example).

Removing an in-memory database

To remove an in-memory database, use the connection URL attribute drop as follows:
j dbc: der by: menory: myDB; dr op=t r ue
jdbc: derby:// nyhost: 1527/ menory: myDB; dr op=t r ue

You can shut down an in-memory database using the shutdown=true attribute before
you drop the database, but this is optional. Dropping the database also performs the
shutdown.

When you drop the database, Derby issues what appears to be an error but is
actually an indication of success. You need to catch error 08006, as described in "The
WwdEmbedded program" in Getting Started with Derby.

If user authentication and SQL authorization are both enabled, only the database owner
can drop the database. (See the Derby Security Guide for details on authentication and
authorization.)

An in-memory database is automatically removed if any of the following happens:
* The Java Virtual Machine (JVM) is shut down normally (for example, if you exit the
i j tool)
* The JVM crashes
* The machine you are running on crashes or shuts down
Persisting an in-memory database

If you create an in-memory database and then decided that you want

to keep it after all, you can use one of the backup system procedures
(SYSCS_UTIL.SYSCS_BACKUP_DATABASE, for example) to persist it. You can
then boot it as an in-memory database at a later time, or use it as a normal file system

33

Derby Developer's Guide

database. See "Backing up and restoring databases" in Derby Server and Administration
Guide for information on using the backup procedures.

Working with Derby properties
This section describes how to use Derby properties.

For details on specific properties, see the "Derby properties" section of the Derby
Reference Manual.

Properties overview

Derby lets you configure behavior or attributes of a system, a specific database, or a
specific conglomerate (a table or index) through the use of properties.

Examples of behavior or attributes that you can configure are:
* Whether to authorize users
» Page size of tables and indexes
« Where and whether to create an error log
« Which databases in the system to boot

Scope of properties
You use properties to configure a Derby system, database, or conglomerate.
« system-wide

Most properties can be set on a system-wide basis; that is, you set a property for
the entire system and all its databases and conglomerates, if this is applicable.
Some properties, such as error handling and automatic booting, can be configured
only in this way, since they apply to the entire system. (For information about the
Derby system, see Derby system.)

 database-wide

Some properties can also be set on a database-wide basis. That is, the property is
true for the selected database only and not for the other databases in the system
unless it is set individually within each of them.

For properties that affect conglomerates, changing the value of such properties affects
only conglomerates that are created after the change. Conglomerates created earlier are
unaffected.

Note: Database-wide properties are stored in the database and are simpler for
deployment, in the sense that they follow the database. System-wide properties can be
more practical during the development process.

Persistence of properties

A database-wide property always has persistence. That is, its value is stored in the
database.

Typically, a database-wide property is in effect until you explicitly change the property or
until you set a system-wide property with precedence over database-wide properties (see
Precedence of properties).

To disable or turn off a database-wide property setting, set its value to null. This has
the effect of removing the property from the list of database properties and restoring the
system property setting, if there is one (and if derby.database.propertiesOnly has not
been set; see Protection of database-wide properties).

34

Derby Developer's Guide

A system-wide property might have persistence, depending on how you set it. If you set it
programmatically, it persists only for the duration of the JVM of the application that set it.
If you set it in the derby.properties file, a property persists until:

« That value is changed and the system is rebooted
» The file is removed from the system and the system is rebooted
« The database is booted outside of that system

Precedence of properties

The search order for properties is as follows.

1. System-wide properties set programmatically (as a command-line option to the JVM
when starting the application or within application code)

2. Database-wide properties

3. System-wide properties set in the derby.properties file

This means, for example, that system-wide properties set programmatically override
database-wide properties and system-wide properties set in the derby.properties file, and
that database-wide properties override system-wide properties set in the derby.properties
file.

Protection of database-wide properties:

There is one important exception to the search order for properties described above:
When you set the derby.database.propertiesOnly property to true, database-wide
properties cannot be overridden by system-wide properties.

This property ensures that a database's environment cannot be modified by the
environment in which it is booted. Any application running in an embedded environment
can set this property to t r ue for security reasons.

See the "Derby properties"” section of the Derby Reference Manual for details on the
derby.database.propertiesOnly property.

Dynamic versus static properties

Most properties are dynamic; that means you can set them while Derby is running, and
their values change without requiring a reboot of Derby. In some cases, this change
takes place immediately; in some cases, it takes place at the next connection.

Some properties are static, which means changes to their values will not take effect while
Derby is running. You must restart or set them before (or while) starting Derby.

For more information, see Making dynamic or static changes to properties.

Setting Derby properties
This section covers the different ways of setting properties.
Setting system-wide properties

You can set system-wide properties programmatically (as a command-line option to
the JVM when starting the application or within application code) or in the text file
derby.properties.

Changing the system-wide properties programmatically:

You can set properties programmatically -- either in application code before booting
the Derby driver or as a command-line option to the Java Virtual Machine (JVM) when
booting the application that starts up Derby.

When you set properties programmatically, these properties persist only for the duration
of the application. Properties set programmatically are not written to the derby.properties
file or made persistent in any other way by Derby.

35

Derby Developer's Guide

Note: Setting properties programmatically works only for the application that starts up
Derby; for example, for an application in an embedded environment or for the application
server that starts up a server product. It does not work for client applications connecting
to a server that is running.

You can set properties programmatically in the following ways:

¢ As a parameter to the JVM command line
¢ Using a Properties object within an application or statement

As a parameter to the JVM command line

You can set system-wide properties as parameters to the JVM command line when you
start up the application or framework in which Derby is embedded. To do so, you typically
use the -D option. For example:

java - Dder by. syst em hone=C: \ hone\ Der by\
- Dder by. st or age. pageSi ze=8192 JDBCTest

Using a Properties object within an application or statement

In embedded mode, your application runs in the same JVM as Derby, so you can also
set system properties within an application using a Properties object before loading the
Derby JDBC driver. The following example sets derby.system.home on Windows.

Properties p = System get Properties();
p. set Property("derby. system hone", "C:\databases\sanple");

Note: If you pass in a Properties object as an argument to the
DriverManager.getConnection call when connecting to a database, those properties are
used as database connection URL attributes, not as properties of the type discussed in
this section. For more information, see Connecting to databases and Working with the
database connection URL attributes as well as the Derby Reference Manual.
Changing the system-wide properties by using the derby.properties file:

You can set persistent system-wide properties in a text file called derby.properties, which
must be placed in the directory specified by the derby.system.home property.

There is one derby.properties file per system, not one per database. The file must be
created in the system directory. In a client/server environment, that directory is on the
server. (For more information about a Derby system and the system directory, see Derby
system.)

Derby does not:
* Provide this file
« Automatically create this file for you
« Automatically write any properties or values to this file

Instead, you must create, write, and edit this file yourself.
The file should be in the format created by the java.util.Properties.save method.

The following is the text of a sample properties file:

der by. i nf ol og. append=true
der by. st or age. pageSi ze=8192
der by. st or age. pageReser vedSpace=60

Properties set this way are persistent for the system until changed, until the file is
removed from the system, or until the system is booted in some other directory (in which
case Derby would be looking for derby.properties in that new directory). If a database is
removed from a system, system-wide properties do not "travel" with the database unless
explicitly set again.

36

Derby Developer's Guide
Verifying system properties:

You can find out the value of a system property if you set it programmatically. You cannot
find out the value of a system property if you set it in the derby.properties file.

For example, if you set the value of the der by. st or age. pageSi ze system-wide
property in your program or on the command line, the following code will retrieve its value
from the System Properties object:

Properties sprops = System get Properties();
System out . println("derby. storage. pageSi ze val ue:
+ sprops. get Property("derby. storage. pageSi ze"));

You can also use Java Management Extensions (JMX) technology to obtain system
information, including some settings that correspond to system properties. For details,
see "Using Java Management Extensions (JMX) technology” in the Derby Server and
Administration Guide.

Setting database-wide properties

Database-wide properties, which affect a single database, are stored within the database
itself. This allows different databases within a single Derby system to have different
properties and ensures that the properties are correctly retained when a database is
moved away from its original system or copied.

You should use database-wide properties wherever possible for ease of deployment and
for security.

You set and verify database-wide properties using system procedures within SQL
statements.

To set a property, you connect to the database, create a statement, and then use the
SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY procedure, passing the name of the
property and the value.

To check the current value of a property, you connect to the database, create a
statement, and then use the SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY function,
passing in the name of the property.

If you specify an invalid value, Derby uses the default value for the property. (If you call
the SYSCS_UTI L. SYSCS_GET_DATABASE PROPERTY function, however, it displays the
invalid value.)

See the Derby Reference Manual for more information on how to use these system
functions and procedures.

Setting properties in a client/server environment

In a client/server environment, you must set the system properties for the server's
system. That means that when you are using the derby.properties file, the file exists in
the server's derby.system.home directory. Client applications can set database-wide
properties because they are set via SQL statements.

The following table summarizes the ways to set properties.

Table 3. Ways to set properties

Type of Property How You Set It

System-wide In derby.properties

« As a command-line option when starting the JVM
that holds the server or, if the server is started
from within a program, programmatically by the
program that hosts the server

37

Derby Developer's Guide

Type of Property How You Set It

Database-wide Using system procedures and functions in an SQL
statement

Making dynamic or static changes to properties

Properties set in the derby.properties file and on the command line of the application that
boots Derby are always static, because Derby reads this file and those parameters only
at startup.

Only properties set in the following ways have the potential to be dynamic:
« As database-wide properties
« As system-wide properties via a Properties object in the application in which the
Derby engine is embedded

See the "Derby properties"” section of the Derby Reference Manual for information about
specific properties.

Properties case study

Derby allows you a lot of freedom in configuring your system. This freedom can be
confusing if you do not understand how properties work. You also have the option of
not setting any properties and instead using the Derby defaults, which are tuned for a
single-user embedded system.

Imagine the following scenario of an embedded environment:

Your system has a derby.properties file, a text file in the system directory, which you
have created and named system_directory. Your databases have also been created in
this directory. The properties file sets the following property:

der by. st or age. pageSi ze=8192

You start up your application, being sure to set the derby.system.home property
appropriately:

java - Dder by. system honme=c: \system directory M/App

The command lines in this example assume that you are using a Windows system.

You then create a new table:

CREATE TABLE tablel (a INT, b VARCHAR(10))

Derby takes the page size of 8192 from the system-wide properties set in the
derby.properties file, since the property has not been set any other way.

You shut down and then restart your application, setting the value of
derby.storage.pageSize to 4096 programmatically, as a parameter to the JVM command
line:

java - Dder by. system home=c: \system directory
- Dder by. st or age. pageSi ze=4096 MyApp

CREATE TABLE anothertable (a |INT, b VARCHAR(10))
The page size for the anothertable table will be 4096 bytes.

You establish a connection to the database and set the value of the page size for all new
tables to 32768 as a database-wide property:

Cal | abl eSt at enent cs =

38

Derby Developer's Guide

conn. prepareCal | ("CALL SYSCS_UTI L. SYSCS_SET_DATABASE PROPERTY(?, ?)");
cs.setString(l, "derby. storage. pageSi ze");
cs.setString(2, "32768");
cs. execute();
cs.close();

You then create a new table that automatically inherits the page size set by the property:

CREATE TABLE table2 (a INT, b VARCHAR(10))
The page size for the table2 table is 32768 bytes.

You shut down the application, then restart, this time forgetting to set the system-wide
property programmatically (as a command-line option to the JVM):

java - Dder by. system hon